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Abstract

This paper suggests bivariate semiparametric index models as a tool for mod-

elling the interplay of socioeconomic and health characteristics in determining

health care utilisation. These models allow for a fully nonparametric relationship

between socioeconomic status, health care need and care utilisation. The only

parametric restriction imposed is that multiple socioeconomic and health indica-

tors can be aggregated into two distinct indices that measure the broader concepts

of socioeconomic status and health care need, respectively. We demonstrate the

usefulness of this class of models based on an illustrative empirical example. The

estimations highlight complex interactions of socioeconomic status and health care

need in determining care use, which may be difficult to grasp via standard para-

metric modelling approaches.
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1 Introduction

Empirical assessments of the effects of socioeconomic status (SES) on health care use

are of great interest in the health policy sphere, as ensuring socioeconomic equity of the

health care system is often considered a high priority. Since health care is instrumental

for improving and maintaining individual health and functioning, a lack of adequate

medical attention among the socially disadvantaged may cause or at least exacerbate

socioeconomic gradients in health.1 However, not all individuals require the same in-

tensity of health care. The amount of care delivered to a specific individual should

rather depend on her own health characteristics and risk factors as well as on the avail-

ability of (cost-effective) treatment technology for improving or managing these. The

latter consideration highlights the important distinction between health care need on

the one hand and common notions of ill-health on the other. Particularly, it permits

"the non-ill to be said to be in need of medical care, in the sense that their health in the

future could be better than it would otherwise be if they received (preventive) care now"

(Wagstaff and van Doorslaer (2000), p.1813). The allocation of health care resources

should therefore appropriately reflect individual differences in health care need, but not

be dependent on the patients’ socioeconomic status.

The distinction between health care need and socioeconomic status as legitimate

and illegitimate sources of differences in medical care utilisation is central to almost

all empirical studies of equity in health care utilisation.2 Although this conceptual

dichotomy is omnipresent in equity assessments of health care delivery, modelling it

in a flexible, yet parsimonious way poses several challenges for the applied researcher.

Parametric models may often appear too restrictive to incorporate fully flexible SES-

need-interactions, as they usually impose strong a priori assumptions on permissible

functional forms. Without extensive prior knowledge, nonparametric approaches seem

better suited for modelling the interplay of SES and health care need with respect to care

use. Yet, actual applications of these methods are frequently impractical. Modelling

SES and health care need typically requires the use of multiple indicators to capture the

multi-facetted nature of either concepts, and nonparametric methods have well-known

difficulties in handling high-dimensional problems.

This paper suggests the use of bivariate semiparametric index models as a potentially

powerful tool for modelling the dichotomy of SES and health-care need in health care

1A survey of the extensive literature on the health-SES nexus is beyond the scope of this paper.
Adler and Newman (2002), Adler et al. (2000), Deaton (2003), Marmot (2005), Marmot and Wilkinson
(1999) and Smith (1999, 2003, 2004) provide excellent introductions to key aspects of the subject.

2See e.g. Wagstaff and van Doorslaer (2000) for an overview.
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delivery. A blend of parametric and nonparametric approaches, semiparametric index

models combine the two in order to mitigate the dimensionality issues of nonparametric

modelling, while maintain its flexibility. Specifically, while this class of models places

some parametric structure on the constituents of SES and care need respectively, it re-

tains a fully nonparametric approach with respect to how these concepts may interact

to determine care use. The model is therefore especially well-suited for assessing ob-

servable heterogeneity in the effects of SES on health care use across different levels of

care need.3

The reminder of the paper is organized as follows: Section 2 reviews parametric

and nonparametric strategies for modelling the SES and care need interactions with

respect to health care use, and highlights their respective advantages and disadvantages.4

Section 3 then tries to strike a balance between these considerations by introducing the

class of bivariate semiparametric index models. Section 4 brings the proposed approach

to life by means of a simple empirical illustration. Specifically, we use a bivariate

semiparametric model to analyse the effects of education and health care need on the

average number of yearly doctor visits of older Italian men. The section describes how

such a model can be estimated and highlights some of the most important findings

revealed by this modelling strategy. Section 5 concludes with a short summary of the

paper and potential directions for future research.

2 Modelling SES and health care need interactions

This section provides a brief conceptual review of alternative approaches for modelling

the SES-need dichotomy in care use. We first consider parametric approaches for mod-

elling the conditional expectations of care use mi given multiple measures of SES Si

and health care need Hi.5 We then move to nonparametric generalizations of these

approaches, as these do not rely on any a prior restrictions regarding the way Si and

3Manski (2005) notes, for example, the importance of assessing the effects of observable hetero-
geneity for policy targeting. This is due to the fact that policy makers can usually only discriminate
between individuals based on observable characteristics in assigning different treatments.

4This section gives a review of various well-known modelling strategies and considers some peculiar-
ities of applications in health economics. A more extensive overview of different assumptions implied
by parametric, semiparametric and nonparametric modelling approaches can be found in Powell (1994)
among others.

5Throughout the paper, our discussion will focus on modelling the conditional expectations
E [mi|Si,Hi]. We note, however, that this is only done for expositional ease and because most models
concentrate on the conditional mean as their main parameter of interest. In fact, the approaches sug-
gested here can also be generalized to other features of care use - such as access to care - that may be
of independent interest (see e.g. Maurer (2007) for an example).
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Hi are allowed to affect mi. However, fully nonparametric models are often difficult

to employ in practice. Their application to multi-dimensional data requires very large

samples, and these may not available in many applications.

2.1 Parametric models

In parametric approaches, the researcher assumes a functional form for the relationship

between health care use mi, SES Si, and health care need Hi, which is determined a

priori up to some finite-dimensional parameter vector β. This single parameter β fully

characterizes a specific data generating process within the supposed parametric family.

A parametric specification for the conditional expectation of mi, given Si, and Hi will

therefore have the form

E [mi|Si, Hi] = m
³
Si, Hi, eβ´ (1)

where m (·, ·, ·) denotes a fixed deterministic family of regression functions assumed by
the researcher and eβ a free parameter to be estimated from the data.6 Of course, the

form of m (·, ·, ·) may be chosen after prior inspection of the data, but the functional
form itself is not allowed to be determined by the data directly. Finding an appropriate

parametric specification seems especially difficult for typical health care data, which

feature numerous peculiarities such as "excess zeros" or "overdispersion". As a response,

a myriad of different functional forms form (·, ·, ·) has been used in practice. These range
from simple linear regression models over more sophisticated nonlinear specifications

such as the negative binomial model up to even more complex approaches like two-

part models, which combine different parametric families such as logit or probit models

with say truncated negative binomial models to obtain an expression for m (·, ·, ·) that
depends on a finite-dimensional parameter vector β only.7 Such parametric approaches

have some well-known merits and shortcomings. Particularly, if the functional form

m (·, ·, ·) is correctly specified, parametric maximum likelihood estimators for β will be

root-N-consistent, asymptotically normal and efficient. If the specification of m (·, ·, ·)
is incorrect, however, the resulting estimate m

³
Si,Hi, bβ´ will generally be inconsistent

for E [mi|Si,Hi], and may therefore be seriously misleading about how average levels

of care use vary by SES and care need. It is easy to see that this issue is indeed a

cause for concern for the applied researcher. The multitude of different models used

in the past already highlights that an a priori picking of the correct functional form

6Throughout the paper, we always use tildes to indicate flexible parameters, which are determined
in the estimation rather than a priori.

7See e.g. Jones (2000) for an overview.
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for m (·, ·, ·) is far from trivial. In this context, it is also worth noting that choosing

m (·, ·, ·) does not only require deciding on the right distributions for the stochastic
error terms, but also taking a stance on how potentially important interactions between

Si and Hi can be accurately reflected in the model. The various different treatments

adopted in the previous literature again illustrate the difficulties in resolving these issues

using prior reasoning alone. For example, some studies simply impose additivity in

Si and Hi, and thereby rule out any SES-need interactions in the use of health care.

Yet, other approaches include linear interactions in the model to allow for some linear

interdependence in the way Si and Hi affect mi, whereas a third strand of the literature

employs arbitrarily discretised values of Si and then runs separate regressions for each

SES group, corresponding to a model with full SES-need interactions at the SES-group

level however these are defined.8

The strong requirement of extensive prior information as well as the arbitrariness

of parametric assumptions have long been identified as key shortcoming of parametric

approaches. As McFadden notes in his famous 1985 presidential address to the Econo-

metric Society, parametric modelling "interposes an untidy veil between econometric

analysis and the propositions of economic theory, which are most abstract without spe-

cific dimensional or functional restrictions". This argument seems to apply with even

stronger force to the empirical analysis of equity in health care utilisation, since there

is rarely any formal theory that could be used to justify specific parametric restrictions

ex ante.

2.2 Nonparametric models

Fully nonparametric models resolve the arbitrariness of parametric approaches, which

stems from the need to choose a functional form for m (·, ·, ·) ex ante. Formally, a model
for the conditional expectation of care use mi, given SES Si, and care need Hi can be

written as

E [mi|Si,Hi] = em (Si,Hi) (2)

Rather than restricting m (·, ·, ·) to lie in some a priori specified parametric family,
nonparametric methods treat em (·, ·) as an infinite-dimensional unknown parameter to
be estimated from the data. Apart from mild regularity conditions, these methods

do not impose any restrictions on the relationship between Si, Hi and E [mi|Si, Hi].

Thus, "the main strength of nonparametric over parametric regression is the fact that it

8See e.g. Jones (2000) and Wagstaff and van Doorslaer (2000) for further references.

5



assumes no functional form for the relationship, allowing the data to choose, not only the

parameter estimates, but the shape of the curve itself" (Deaton (1997), p.193). A variety

of approaches, such as kernel or series methods can be used to estimate em (·, ·).9 While
such a general estimation approach provides a desirable safeguard against the potential

adverse effects of parametric misspecification, the price of this added flexibility and

robustness are much greater data requirements for actual implementation. Particularly,

the precision of fully nonparametric estimators is often poor and their rate of convergence

is usually slower than in parametric models. This is especially true in higher-dimensional

problems like the one considered here, where both SES and health care need may only be

measurable via multiple indicators. Hence, there is a practical trade-off between the use

of parametric or nonparametric methods for estimation based on finite samples. Given

this trade-off, it would seem desirable to combine the two approaches to retain some

flexibility and robustness in modelling the function E [mi|Si,Hi], but mitigate the "curse

of dimensionality" associated with nonparametric regression. Semiparametric models do

this by introducing parametric components to the model to attain some dimensionality

reduction. Of course, the plausibility of such an approach depends on whether such

parametric elements seem justifiable by theory, as indicated by the McFadden quote. We

use the nature of the policy discourse to motivate a bivariate semiparametric framework

for modellingE [mi|Si,Hi], which ought to strike a reasonable balance between precision,

flexibility and coherency with theory.

3 Bivariate semiparametric index models

Moving from fully nonparametric to semiparametric regression requires the introduction

of some theoretically justifiable parametric elements in (2). At first, this appears chal-

lenging, as we have not provided a formal model on how SES and health care need bring

about specific levels of care use. Moreover, looking at the previous literature as well as

the policy debate, the only apparent theoretical differentiation is their categorization

into legitimate and illegitimate sources of differences in medical care utilisation, what

we have labelled SES Si on the one hand, and health care need Hi on the other. At

the conceptual level, the discourse therefore appears merely dichotomous, with addi-

tional complexities solely arising from the use of multiple measures to capture "need"

and "non-need" determinants of health care use. In other words, while SES and health

9See for example Härdle (1990), Härdle and Linton (1994), Deaton (1997) or Yatchew (2003) for
accessible introductions to the topic.
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care need appear sufficiently well-defined for theory, they seem inherently difficult to

actualize when bringing theory to the data. The class of bivariate semiparametric index

models suggested here reflects this dichotomous structure of the debate - aggregating il-

legitimate and legitimate sources of differences in care use into one-dimensional concepts

of SES and care need, respectively.10 The analysis then proceeds fully nonparametri-

cally when estimating how expected care use varies with SES and health care need.

Specifically, it does not impose any additional functional form assumption on m (·, ·, ·)
beyond the two index restrictions that allow aggregation of the multiple SES and care

need indicators.

To understand how this procedure works, assume that the concept of SES can be

measured as a linear combination of say education, income or wealth, while health care

need may be measured as a linear combination of multiple need indicators such as age,

diseases, functioning measures, respectively. We can then represent SES and health care

need as two indices ISESi and IHCN
i constructed as a linear combination of the multiple

SES and need indicators Si and Hi that are measured in the data. We thus obtain

ISESi = Siδ (3)

IHCN
i = Hiβ (4)

where δ and β denote specific aggregation parameters pertaining to the broader con-

cepts of SES and health care need, which are now measured via ISESi and IHCN
i , re-

spectively. Assuming that expected health care utilisation E [mi|Si,Hi] depends on

Si and Hi through the two one-dimensional indices ISESi and IHCN
i only, we obtain a

semiparametric model of the form

E [mi|Si,Hi] = E
h
mi|gISESi , gIHCN

i

i
= em³gISESi , gIHCN

i

´
= em³Sieδ,Hi

eβ´ (5)

where eδ, eβ and em (·, ·) denote unknown (finite- and infinite-dimensional) parameters
that need to be estimated from the data. The only parametric restrictions involved in

this model are the index assumptions (3) and (4). Particularly, the approach remains

fully nonparametric with respect to em (·, ·), and does therefore not incorporate any a
priori constraint on how gISESi and gIHCN

i affect E [mi|Si, Hi].

Being a hybrid of parametric and nonparametric regression, the semiparametric dou-

10Ichimura and Lee (1991) have introduced multiple index model into the theoretical econometrics
literature, which have been subsequently applied to diverse research questions with bipartite structures
such as supply and demand (Stern (1996), Maurer and Pohl 2007)) or interactions of macro and micro
determinants of the income distribution (Farré-Olalla and Vella (2006)) to name just a few.

7



ble index model in (5) features obvious similarities with both approaches. Like in para-

metric models, (5) includes some finite-dimensional unknown parameter vectors eδ andeβ. Beyond eδ and eβ, however, the model also includes the infinite-dimensional parameterem (·, ·) which represents a fully flexible link function for mapping SES gISESi and care

need gIHCN
i into expected care use E [mi|Si, Hi]. Like in the nonparametric approach,

the functional form of em (·, ·) is not at all constrained a priori, but in fact is estimated
from the data. On important advantage of this modelling strategy is that it flexibly

incorporates observable heterogeneity in the effects of SES gISESi for different levels of

health care need gIHCN
i . Hence, SES-gradients are allowed to vary freely across the need

distribution, which may reveal some useful information for policy design.

The class of semiparametric index models does, however, not only inherit the advan-

tages of both approaches, but also their disadvantages. On the one hand, semiparametric

estimators for E [mi|Si,Hi] are generally consistent under a wider range of circumstances

than their parametric counterparts and therefore more robust to potential misspecifi-

cation. At the same time, they are usually more precise than their nonparametric

counterparts, due to the built-in dimensionality reduction implied by the index restric-

tions. Specifically, the parametric components of the model, eδ and eβ, can be estimated
with the usual parametric rate of convergence, whereas the estimate for the conditional

expectation em³Sieδ,Hi
eβ´ converges at the (slower) rate of a nonparametric estimate

of a conditional mean function with two arguments, and thus much faster than if Si
and Hi would be treated fully nonparametrically. On the other hand, semiparametric

estimators may be considerably less efficient than their fully parametric counterpart, at

least if the latter can be correctly specified based on prior information. Also, unlike the

fully nonparametric approach, semiparametric estimation may still lead to inconsistent

estimates, if the parametric part of the model - here the two index restrictions - are in-

accurate. We therefore consider semiparametric models as complementary to the other

two approaches.

4 Empirical illustration

This section presents an empirical example to bring the above concepts to life, and show

the applicability of such semiparametric index models to typical survey data on health

care use.
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4.1 Data

To illustrate the kinds of insights that a semiparametric double index approach may

deliver, we estimate a model for health care utilisation of older Italian men using data

from the first wave of the Survey of Health, Ageing and Retirement in Europe (SHARE)

collected in 2004.11 SHARE is a multidisciplinary, cross-national micro data base con-

taining information on health and socioeconomic status of some 22,000 Continental

Europeans aged 50+ from ten European countries. Yet, for the sake of this simple

illustration, we restrict our sample to the 1017 male respondents from Italy.12

4.2 Model specification

We measure health care utilisation as the total number of doctor visits during the last

twelve months. This measure includes both visits to GPs as well as specialists, but

does not account for inpatient care as a potential substitute. For SES, we use years

of education as our proxy variable. As we are considering an elderly population, al-

ternative SES measures such as income or wealth appear heavily confounded by the

respondent’s labour market status as well as typical life-cycle trajectories of asset hold-

ings, respectively.13 It is, however, important to note, that the suggested model could

easily incorporate multiple SES indicators if desired. Specifically, these indicators would

then form an actual SES-index, replacing our one-dimensional SES-measure based on

education. The corresponding index coefficients would then be estimated in the same

way as the index coefficients of the care need index, to which we turn now. Our model

uses a large number of health indicators to comprehensively capture individual differ-

ences in health care need. In fact, the abundance of health measures available in SHARE

makes it an ideal data source for the kind of exercise considered here.

Apart from age and dynamometer-measured maximum grip strength, we include

11This paper uses data from the early release 1 of SHARE 2004. This release is preliminary and may
contain errors that will be corrected in later releases. The SHARE data collection has been primarily
funded by the European Commission through the 5th framework programme (project QLK6-CT-2001-
00360 in the thematic programme Quality of Life). Additional funding came from the US National
Institute on Ageing (U01 AG09740-13S2, P01 AG005842, P01 AG08291, P30 AG12815, Y1-AG-4553-
01 and OGHA 04-064). Data collection in Austria (through the Austrian Science Foundation, FWF),
Belgium (through the Belgian Science Policy Office) and Switzerland (through BBW/OFES/UFES) was
nationally funded. The SHARE data set is introduced in Börsch-Supan et al. (2005); methodological
details are contained in Börsch-Supan and Jürges (2005).

12Results from a more comprehensive semiparametric cross-country comparison of care utilization
using data for both sexes and all ten initial SHARE countries can be found in Maurer (2007).

13See Maurer (2007) for a more detailed justification of this choice. Banks et al. (2002) provide for
a more comprehensive theoretical discussion of the issues involved. An empirical assessment can, for
example, be found in Vos (2004).
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a set of 15 binary indicators for different doctor-diagnosed health conditions. These

ought to capture various aspects of individual health care need, including acute condi-

tions such as heart attacks or stroke as well as chronic diseases like diabetes or mere

risk factor such as hypertension, all of which require a different form and intensity of

disease management. Table 1 presents basic descriptive statistics for all variables used

in the analysis. The unconditional mean of the number of doctor visits in the last twelve

months is 7.23. The respondents have an average education level of 7.6 years of school-

ing. An additional noteworthy feature of the data is our set health controls features

considerable heterogeneity in terms of prevalence rates. While some conditions such as

hypertension or arthritis are quite prevalent among older Italian men, others such as

hip fractures or Parkinson are fairly rare.

4.3 Estimation

As our empirical illustration employs many health care need indicators but only one

SES measure14, the general double index model for estimating E [mi|Si, Hi] based on

(5) simplifies to

E [mi|Si,Hi] = em³Si, Hi
eβ´ (6)

and thus requires estimation of only one index parameter eβ in addition to nonparametric
link function em (·, ·).15
We use Ichimura and Lee’s (1991) multiple index extension of Ichimura’s (1993)

semiparametric least squares estimator for single index models to estimate the index

coefficient eβ in (6) along with the nonparametric link function em (·, ·). Specifically,
Ichimura and Lee’s estimator for eβ is based on minimizing a semiparametric least squares
criterion function of the form

SSR
³eβ´ = NX

i=1

³
mi − em³Si, Hi

eβ´´2 (7)

14From the derivations that follow, it is straightforward to see how the estimation can also handle
richer index specifications for Si. Yet, for reasons outlined in the specification section, as well as in
Maurer (2007), we prefer the specification based on education alone, which seems still sufficient to
illustrate the main features of bivariate semiparametric models.

15Note that, as always in semiparametric index models, separate identification of the components

of em³Si,Hi
eβ´ can only be attained up to location and scale (see e.g. Horowitz (1998)). This is why

the first argument of em (·, ·) does not contain any parameter and there is also no intercept in eβ (to
normalize location) while its first element is set equal to one (to normalize scale).

10



where an estimate of em³Si, Hi
eβ´ for any given candidate parameter vector eβ is con-

structed via bivariate nonparametric kernel regression of mi on Si and Hi
eβ, respec-

tively.16 The estimate of em³Si,Hi
eβ´ is thus computed via

em³Si,Hi
eβ´ = Pn

j=1Khi (Xi −Xj)mjPn
j=1Khi (Xi −Xj)

(8)

with Xi =
³
Si,Hi

eβ´, i.e. a two-dimensional vector consisting of SES Si and health

care need Hi
bβ, respectively, and Khi (Xi −Xj) = det(hi)

−1 · K
¡
h−1i (Xi −Xj)

¢
for

some bivariate kernel function K (·) and matrices of local bandwidths hi regulating the
degree of smoothing in the two directions of the

³
Si,Hi

eβ´-space.
4.4 Selected results

As highlighted in the above discussion, the semiparametric modelling approach features

two main estimation parameters - the finite-dimensional parameter eβ as well as the
infinite-dimensional parameter em (·, ·). Our presentation of the results reflects this bi-
partite structure, starting with a brief discussion of what we estimate as health care

need Hi
bβ before turning to the semiparametric estimate for the conditional expecta-

tions E [mi|Si, Hi] that also incorporates an estimate bm (·, ·) of the nonparametric link
function em (·, ·).
Table 2 presents the estimates for the parameter vector bβ, which aggregates all health

indicators into the one-dimensional health care need indexHi
bβ. Of course, we cannot in-

vestigate the effects of these health controls on actual care utilisation without knowledge

of the unspecified mapping bm (·, ·). However, we can check whether their aggregation
into a single care need index is consistent with our prior expectations regarding their

relative signs. For identification, the index does not include an intercept and we have

normalized the coefficient of age to 0.01 to fix its location and scale. Given this normal-

ization, we would expect that all of our health controls, with the exception of maximum

grip strength, enter the model with a positive sign.17 In fact, a remarkably consistent

16The actual estimator requires some additional adjustments such as trimming of the criterion for
observations were the data is sparse as well as the use of so-called higher order kernels or local bandwidth
selection (local smoothing). While the actual estimations incorporate trimming and local smoothing,
these technicalities are omitted from the discussion here for the sake of brevity and expositional ease.

17This presumes of course that both higher age and the prevalence of a health condition indicate
more care need, whereas higher grip strength indicates less need for medical attention. So far, we do
not know how the care need index maps into actual utilization, but we can assess this relationship once
we turn to our estimate of em (·, ·).
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pattern emerges. Almost all of our health conditions enter the index positively, whereas

maximum grip strength has indeed the expected negative coefficient. Specifically, the

only health conditions that enter the model with a very small and statistically insignifi-

cant negative coefficient are "having been diagnosed with high cholesterol" and "having

ever been diagnosed with cataracts", two conditions for which we would also not have

expected a large effect on care need.18 Also, the relative sizes of the estimated coeffi-

cients seem largely in line with prior expectations. Given this encouraging first glimpse

on the constituents of care need, we can now turn to a more comprehensive assessment

of the effects that our health controls on actual care use. Also, and arguably more

interestingly, we can assess the effect of our SES measure - education - on medical care

utilisation, and how its effects vary across the distribution of health care need. To do so,

we present our estimate of the nonparametric function bm (·, ·) which links years of edu-
cation Si and the aggregated care need index Hi

bβ with the expected number of doctor
visits.

Since semi- and nonparametric methods leave it to the data to choose the shape

of the regression function em (·, ·), we can of course not come up with a corresponding
estimate bm (·, ·) out-of sample. It is therefore important to first clarify the relevant
support of Si and Hi

bβ over which we can estimate the conditional expectation functionem (·, ·) nonparametrically. Figure 1 presents bivariate density estimates for the joint
distribution of Si and Hi

bβ to highlight the relevant support of the data. The joint
distribution of Si and Hi

bβ in the sample is concentrated at five to six years of education
and a care need index value of around 0.4, but covers a fairly wide range of educational

attainment and health care need. In the discussion of our estimates, we will make sure

to just consider points that lie well inside the support of the data to avoid invalid out-

of-sample prediction as well as spurious results due to a lack of sufficient data in the

tails.

Figure 2 presents our semiparametric estimate of the conditional expectations func-

tion E [mi|Si,Hi], which is the main object of interest in this study. Exploiting the

semiparametric structure of (6), the two plots display bm (·, ·) as a function of its two
arguments, education Si and health care need Hi

bβ. The figure reveals several inter-
esting patterns regarding the interplay of Si and Hi

bβ in the determination of care use.
Particularly intriguing is the vast observable heterogeneity in the effects of educational

attainment across different points in the care need distribution. For low levels of care

need, say Hi
bβ = 0.1, the average number of doctor visits is only slightly increasing with

18This is especially true for the latter, which can basically be completely cured by one-time surgery.
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increasing levels of educational attainment. Among these relatively healthy respon-

dents, we estimate only a small positive education gradient, with conditional means ofbm (2, 0.1) = 3.12 for two years of education and bm (14, 0.1) = 3.88 for fourteen years of
education, respectively. Yet, the effects of education change dramatically as we move

along the distribution of care need. Specifically, the slightly positive education gradient

gradually reverses, being almost zero at Hi
bβ = 0.44 before reemerging as a pronounced

negative gradient for those with higher levels of care need. For example, for respondents

with a care need level of Hi
bβ = 1, the average number of doctor visits in the past

year varies from 13.26 to 9.46 for two and fourteen years of education, respectively. We

thus find a fairly strong dependence of the effects of SES on care use for different levels

of care need, indicating important SES-need interactions that seem to call for explicit

consideration when modelling SES-gradients in care use.

5 Conclusion

The present paper suggests semiparametric double index models as a potentially valuable

tool for applied researchers analysing the interplay of SES and health care need in deter-

mining medical care utilisation. The previous literature has mostly employed parametric

methods, in which the functional form of the regression function is a priori restricted

by the researcher. While these approaches surely have certain advantages in terms of

estimation efficiency and inference if correctly specified, they are also known to perform

poorly if the assumed parametric structure is inaccurate. Semiparametric approaches

on the other hand, combine parametric modelling with nonparametric estimation. This

approach seems especially advantageous if there is little a priori knowledge about po-

tentially complex features in the data, but some parametric structure can nonetheless

be justified by theory. The semiparametric double index approach suggested here is

motivated by these observations. With regard to the micro-determinants of health care

use, almost all studies feature a bipartite conceptual distinction between SES and care

need as illegitimate and legitimate sources of differences in medical care utilisation, even

if either concept can only be actualized via multiple proxies. The parametric component

of our suggested modelling approach therefore assumes that multiple SES and care need

indicators can be aggregated into a single SES and health care need index respectively.

Given these one-dimensional SES and care need measures, the analysis proceeds fully

nonparametrically. Particularly, we do not assume any specific functional form with re-

spect to how SES and care need interact in bringing about certain intensities of care use.
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Our approach thus allows for observable heterogeneity in SES-gradients across the care

need distribution, which may deliver important insights for targeting health policies.

We demonstrate how the suggested method works based on actual data on health

care use of older Italian men taken from the first wave of SHARE. Particularly, our

example considers a typical research question in equity analysis, namely the conditional

effects of education on health care use, given multiple controls for care need. Our il-

lustration turns out to be an interesting case of partially offsetting education gradients

which vary considerably across the distribution of health care need. Particularly, our

estimates indicate that the highly educated healthy respondents consume more care

than their less educated counterparts. The education gradient then gradually reverses

with the less educated using considerably more care when sick than the well educated

respondents. Similar to Abasolo et al. (2001), we can interpret our regression results in

terms of inequity in health care delivery. Yet, our approach has the additional advantage

that we can explicitly consider how SES-gradients may vary across the need distribu-

tion. Our example has highlighted that such observable heterogeneity may indeed be

important and by itself informative for targeting policies. In addition, it may also pose

some challenges for conventional parametric approaches as to how to account for such

heterogeneity.

Admittedly, the paper leaves some open issues for future research. Firstly, it would

be most useful to also attempt an empirical comparison of the various parametric mod-

els with the semiparametric approach suggested here, which may deliver further insights

on the practical relevance of some of the theoretical concerns that have served as its

motivation. Secondly, investigating the usefulness of the proposed estimator for formal

approaches of measuring and testing for inequity in health care delivery seems another

promising route for further work. As it stands, we nonetheless deem semiparametric es-

timation as a promising tool for flexibly modelling SES-need interactions in the delivery

of care, even if additional evidence on its relative performance is surely desirable.
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Table 1: Summary statistics

Variable Mean Standard Error Minimum Maximum

Number of doctor visits 7.230 11.280 0 98

Years of education 7.600 4.340 0 22

Age 64.752 8.580 50 94
Maximum grip strength 39.942 10.680 7 70
Asthma 0.044 0.206 0 1
Cancer 0.025 0.155 0 1
Cataracts 0.048 0.214 0 1
Cholesterol 0.176 0.381 0 1
Diabetes 0.122 0.327 0 1
Heart attack 0.112 0.316 0 1
Hip fracture 0.012 0.108 0 1
Hypertension 0.354 0.478 0 1
Lung disease 0.080 0.271 0 1
Osteoporosis 0.015 0.121 0 1
Parkinson 0.005 0.070 0 1
Stroke 0.030 0.172 0 1
Ulcer 0.078 0.268 0 1
Other condition 0.127 0.333 0 1

Number of observations 1017
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Table 2: Parameter estimates (health care need index)

Variable Coefficient Standard Error

Age 0.0100 --------
Maximum grip strength -0.0120 0.0064
Asthma 0.1431 0.1244
Cancer 0.2997 0.2301
Cataracts -0.0023 0.0994
Cholesterol -0.0044 0.0730
Diabetes 0.0834 0.0547
Heart attack 0.7112 0.2781
Hip fracture 0.3410 0.3959
Hypertension 0.4009 0.1762
Lung disease 0.3128 0.1413
Osteoporosis 0.1521 0.2000
Parkinson 0.2280 0.7824
Stroke 0.1387 0.1210
Ulcer 0.0966 0.1065
Other condition 0.1361 0.0953
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Figure 1: Bivariate Density Estimates for the Controls 
 
 

A. Surface Plot 
 

 
 
 

 
B. Contour Plot 
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Figure 2: Estimated Conditional Expectations Function 
 
 

A. Surface Plot 
 

 
 
 

 
B. Contour Plot 
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