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Abstract

This paper develops a dynamic general equilibrium model of fertility, human capital accumulation,
child labor and uncertain child survival focusing on the qualitative and quantitative effect of declining
mortality on household decisions and economic development. Due to uncertainty about child survival,
parents have a precautionary demand for children. Rising survival probability leads to falling fertility,
eventually to investment into schooling and the demise of child labor. Child labor can be an obstacle
to development since it lowers the incentives of parents to educate children. Furthermore, the paper
argues that the decline of precautionary child demand as a consequence of falling mortality is not
sufficient to generate a demographic transition. Falling mortality can only explain a relatively small
part of the fertility decline. A sizable reduction in fertility can only be achieved by human capital
investment and the induced quantity-quality trade off.
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1 Introduction

Key stylized facts characterizing the evolution of humanity from an era close to subsistence lev-
els to today’s high-tech economies are – among other facts – increasing technological progress
combined with rising educational attainment and the demise of child labor on the one hand
and falling mortality and fertility causing a demographic transition on the other hand. These
events have occurred in today’s developed countries from the onset of the industrial revolution
to present times and are currently under way in developing countries. These stylized facts can
therefore be observed both across time and across countries (see section 2). The motivation
for this research is to build a model explaining these facts in a general equilibrium setup.
Although there is a large body of literature on each of the mentioned items in isolation, work
on the combination and interaction of these phenomena is scarce.

To replicate the historically observed sequence of these stylized facts, this paper develops
a dynamic general equilibrium model of endogenous fertility, human capital investment deci-
sions, child labor and uncertain child survival. The driving force of the model dynamics is the
changing survival rate. Parents maximize utility from own consumption, child leisure and a
quantity-quality composite of children. In addition to adult labor supply, parents can choose
to send children to work and thus generate additional income. Quality is measured in terms of
the child’s human capital whereas the quantity refers to the number of surviving children. The
macroeconomic piece of the model consists of a production function with human capital and a
fixed amount of land as inputs. Technological progress is initially driven by rising population
and later additionally by human capital investment.

Employing this framework, the paper makes two contributions to the literature. First, it
is the first paper bringing the quantity-quality decision of children on the one hand and child
labor on the other hand in an analytically tractable framework with uncertainty, inspired by
the seminal contribution of Kalemli-Ozcan (2003), together. Second, it provides quantitative
evidence on the contribution of falling mortality, rising schooling and the role of child labor
to the demographic transition. Using a calibrated version of the model it is shown that
the decrease of precautionary demand for children as a consequence of falling mortality is
able to explain a small drop in fertility but it is unlikely to be the main driving force of
the demographic transition. The reversal of the relationship between income, mortality and
population growth is ultimately triggered by the quantity-quality trade off which forces parents
to curb fertility in order to endow children with schooling. We find that child labor is a
potential obstacle to development in a sense that the more children can earn on the labor
market, the higher is fertility and the lower is schooling. Moreover, the model is able to
generate the historically observed sequencing and qualitative behavior of fertility, population
growth, child labor and schooling. Initially, sending children to school is not optimal but
children work and fertility is declining whereas population growth is rising. Later – with
falling mortality – fertility and child labor decrease and schooling becomes optimal. This
fuels technological progress which further rises survival rates, decreases fertility and child
labor. Eventually, parents choose not to send their children to work but invest only into their
education.

Recently, the link between child labor and human capital accumulation has shifted into the
focus of growth and development economics. Basu and Van (1998) present a model in which
parents are not selfishly exploiting their children but let their children work because additional
income close to subsistence levels is the welfare maximizing household solution. They also
discuss the possibility of multiple equilibria. Hazan and Berdugo (2002) develop a model with
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child labor and schooling decision. Their central result is that technological progress increases
the wage differential between children and adults leading to reduced child labor and more
education. Baland and Robinson (2000) investigate the role of capital market imperfections
and the role of bequests for child labor. They find that child labor is inefficient if parents
can use children’s income as a substitute for negative bequests or are credit constrained.
Dessy (2000) argues that child labor may be the obstacle to development. If the economy is
sufficiently close to a critical value of per capita human capital, the presence of child labor
may pull the economy into a poverty trap which can be avoided by introducing compulsory
schooling. Strulik (2004a) presents a model with child mortality and child labor and Strulik
(2004b) additionally includes child health affecting child survival. Depending on the child
survival rate, the economy can be stuck in a high-fertility and low growth regime with child
labor or in a low fertility and perpetual growth environment. The demographic transition is
generated by a quantity-quality mechanism pioneered by Becker and Lewis (1973) and Becker
(1960).

The choice of human capital investment under uncertain survival has been considered in
Kalemli-Ozcan (2003) and in a general equilibrium setup in Kalemli-Ozcan (2002). Parents
have a “precautionary” demand for children. As a consequence of this, high mortality rates
and thus high uncertainty about the survival of offspring will induce parents to have more
children but endow them with little education. Lowering the risk will decrease precautionary
demand and accelerate investment into schooling. In the same spirit, Tamura (2006) presents
numerical evidence showing that this family of models can be used to generate realistic re-
sults for important macro- and microeconomic variables (life expectancy, fertility, population,
mortality, etc.). Using a perpetual youth model Kalemli-Ozcan et al. (2000) show that a re-
duction in the mortality rate at any age significantly increases investment into human capital.
Empirical studies confirm these findings. In an econometric analysis using Swedish fertility
data, Eckstein et al. (1999) find that both increases in real wages and reductions in infant and
child mortality significantly contributed to the fertility decline. Most important was, however,
the decline in mortality. Similar findings are confirmed for India by Ram and Schultz (1979)
who argue that falling mortality was an important incentive to invest into education.

There is an enormous amount of literature offering a wide range of alternative explanations
for the demographic transition and the rise of human capital investment. The seminal paper
by Galor and Weil (2000) generates the transition from a Malthusian development stage to
a growing economy by endogenously raising the rate of technological progress and thereby
human capital investment. Hansen and Prescott (2002) examine a model with an agricultural
sector with a fixed factor (land) and a modern technology with constant returns. Assuming
exogenous technological progress in both sectors, the modern sector will eventually be more
productive and pull the economy out of the Malthusian trap. Galor and Weil (1996) derive
the fertility decline from a narrowing wage gap between men and women. By increasing the
value of female labor, the costs of child rearing increase and thus the transition from a high
fertility to a low fertility regime is achieved. In the model of Cervellati and Sunde (2005) the
driving force of development is the rising life expectancy. Assuming that education incurs
a fixed (time) cost, rising life expectancy makes education more attractive and thus agents
will engage into education as their planning horizon expands. Jones (2001) is proposing a
mechanism in which the introduction of property rights plays the key role in explaining growth
and the demographic transition over long periods. Other explanations for the demographic
transition are rooted in evolutionary economics with people having a preference for child
quality eventually dominating Galor and Moav (2002) or changes in marriage institutions
with an increasing share of women with higher human capital Gould et al. (2008).
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Stylized facts motivating this research are presented in section 2. Section 3 introduces the
model environment and outlines the household’s maximization problem. Section 4 describes
the macroeconomic setup. Section 5 closes the model by establishing the links between house-
hold decisions and aggregate behavior on the one hand and the dynamic behavior of the model
on the other hand. In the same section we also present the results from a calibration exercise.
Section 6 concludes.

2 Stylized Facts

This section presents stylized facts motivating this research in some more detail. Note that all
facts hold true for the modern world with poor and rich countries (i.e. for the cross section)
and in a time series perspective using historical data for today’s developed countries.

Figure 1 plots the percentage of working children against GDP per capita. The blue dots
are numbers for the years 1960-2001. The red dots are the numbers for the year 2002 revealing
that child labor is still a widely spread phenomenon in today’s world. In countries like Mali,
Bhutan and Burundi almost 50% of the children aged 10-14 participate in the labor market
and are thus an important source of family income. In the 1960s and 1970s, the share of
working children was even higher. In Mali, Nepal and Burkina Faso more than half of all
children had to work in order to contribute to family income. Using income per capita as
a benchmark, these numbers are comparable to historical statistics. According to Lebergott
(1964) at the end of the 19th century between 13 and 18 percent of all children aged 10-15
in the US were actively participating in the labor market, working even in industries like
mining or manufacturing and a ten year old boy employed in agriculture had the earning
capacity of about one quarter of an adult. The second empirical regularity observed in the

Figure 1: GDP per Capita and Child Labor
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data is the strong negative correlation of child or infant mortality and income per capita.1

Figure 2 shows that as income approaches very low (subsistence) levels, child mortality rises
dramatically. Income beyond this threshold has a relatively minor influence. As a glance

1There is a strong positive correlation (ρ >0.8, based on data from The World Bank (2004)) between adult and infant
mortality suggesting that high child mortality is also a good proxy for health conditions over the entire life span.
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Figure 2: GDP per Capita and Child Mortality
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on the blue and red dots (indicating again 1960-2001 and 2002 separately) reveals, there
has been no large gain in child survival probabilities for these low income countries despite
the huge gains in medical knowledge worldwide which suggests that income seems to be the
most important factor determining child mortality. Historical statistics from Sweden (Wolpin
(1997)) and England (Cutler et al. (2006)) confirm this result. Infant mortality was high and
the chance to survive age 15 were as low as 60-70%. Survival probabilities conditional on
having survived childhood were much higher. Due to high mortality rates earlier in life, life
expectancy at birth around 1850 in England was 40 years, conditional on being 10 years old
55 years and close to 70 years at the age of 45. Thus, the dramatic increase in life expectancy
came first from eliminating the risks early in life. Huge improvements in life expectancy later
in life were achieved only in more recent times.

The trade off between quality and quantity is another regularity present in the data and
shown in figure 3. There is a clear negative correlation between the enrolment rate at any
schooling level and the total number of births per woman. Again, the same conclusion can
be obtained from a time series perspective. French enrolment rates of children (aged 5-14) to
primary school increased from 30% in 1830 to almost 90% in 1900. In England, the fraction
of children with primary education was about 20% in 1860 and reached 80% in 1900. At the
same time the number of birth per woman declined dramatically (Flora et al. (1983)). The
“corollary” of the higher survival rates and rising schooling is that the pattern of population
growth has changed too. Initially, rising survival rates increased population growth but for
rising income this relationship turned negative. As can be seen in figure 4, population growth
for the Less Developed Countries is hump-shaped, peaked at 2.7% around 1965 and has been
declining since then. The same hump-shaped pattern can be verified for today’s developed
countries with the peak roughly 100 years earlier.

3 The Model

Consider an OLG economy where agents live for two periods and survival to the second pe-
riod is uncertain. In the first period they are children and can work, receive some education
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Figure 3: Fertility and Enrollment Rate
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Figure 4: Population Growth in LDCs and Western Europe
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(which enhances their adult human capital) or do both at the same time. Uncertainty con-
cerning their survival is unraveled at the end of the first period. The earnings from their
labor supply accrues to the parents. As adults, they consume their total income and make a
one-time fertility decision about the desired number of children, children’s labor supply and
educational attainment. Adults do not leave any bequests. Time is discrete and is extending
into the infinite future. The economy produces a single consumption good using two factors
of production: human capital and land.

3.1 Household behavior

In this setup households choose consumption ct, the number of newborns nt, child labor
supply `t and schooling investment st they give to each child. Preferences are defined over
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adult consumption ct, the future earnings of the surviving children qtntht+1wt+1 where qt

is the probability to survive to adulthood, nt is the number of children, ht+1 is the human
capital of each child and wt+1 is the wage per unit of human capital. Parents also derive
utility from child leisure (1− `t) where `t is child labor supply. For simplicity we assume that
nt is continuous, or, we deal with an average individual in the economy. The utility function
of generation t can be thus written as

Ut = γ1 log (ct) + γ2{E[ln (qtntht+1wt+1)]}+ γ3 ln (1− `t)(1)

where expectations are taken with respect to the child survival rate qt. In this model, the
survival probability refers to the chances to survive to the age until children start making
own economic decisions. Due to this simple setup it is not possible to distinguish between
infant, early and late childhood mortality. Assuming that children’s survival rate is binomi-
ally distributed and using the method of Kalemli-Ozcan (2003), the above expected utility
maximization can be approximated2 by

Ut = γ1 ln(ct) + γ2

[
ln(qtntht+1wt+1)−

1− qt

2ntqt

]
+ γ3 ln(1− `t).(2)

The difference to a standard maximization problem without uncertain child survival is the
remainder term in the parentheses. Low survival probability generates large disutility which
can be minimized by having more children. The economic consequence of this additional term
is that it generates a “precautionary” demand for offspring.3 Note that this additional term
vanishes if the survival probability approaches unity. Naturally, with qt = 1 there is no more
risk and we are back in the certainty case.

Human capital is produced according to

ht+1 = (s
¯

+ st)ξ(3)

where s
¯

and ξ are parameters and st is schooling investment into the children’s human capital.4

Investment in schooling has – from the households’ point of view – only private benefits and
households do not take possible externalities of schooling into account. Without investment
into schooling, the stock of human capital is a constant scaling factor.

Adults supply labor inelastically and use a portion of their remaining time – here stan-
dardized to unity – on rearing children and (if optimal) educating them. There are no tuition
fees: the cost of education are only parent’s opportunity costs.5 Each child consumes a fixed
share v ∈ (0, 1) of the parents’ time which is independent of the number of children. This
fixed cost per child is assumed to capture forgone wages, nutrition, clothing or other relevant
expenditures. On the other hand, children can be sent to work and earn a fraction θ < 1 of

2This is basically a third order approximation of the log-function evaluated at the mean of the distribution. See appendix
B for a derivation of the approximation.

3See also Sah (1991) for an application of a similar idea to parental welfare.
4There is no interaction between working and school. Some authors (e.g. Strulik (2004a)) assume that if children work,

the efficiency of schooling is diminished and the accumulation process of human capital is less efficient. Although there is
empirical evidence that labor has a negative effect on school achievement (Psacharopoulos (1997)), we ignore this issue here
since it alters only the quantitative but not the qualitative aspects of the model.

5The introduction of tuition fees does not affect the qualitative results as long as they are proportional to income. For a
model with schooling costs depending on parents’ human capital see de la Croix and Doepke (2003).
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an adult’s wage. The budget constraint is then

ct = wtht[1− (v + st)nt] + θwtht`tnt.(4)

Additional constraints are the (natural) “birth limit” restriction nt ≤ 1/v6, non-negative
consumption, non-negative schooling investment, and non-negative child labor supply. Addi-
tionally, we make the following assumptions:

Assumption 1. v > θ.

Assumption 2. vξ − s
¯

> 0

Assumption 3. v − s
¯
− θ > 0

Assumption 1 is needed to ensure that children are always a monetary cost to parents.
Assumption 2 guarantees that parents will invest into schooling in an environment without
mortality risk. Finally, assumption 3 guarantees that there is always an interior solution.

3.2 Solution to the Household’s Problem

Solving the household’s decision problem gives the following first order conditions for the
schooling decision, child labor supply and the number of offspring

∆(st, λ) ≡ γ2ξ

s
¯

+ st
− λwthtnt,(5a)

= 0 if st > 0
< 0 if st = 0

∆(`t, λ) ≡ γ3

1− `t
− λwthtntθ,(5b)

= 0 if `t ∈ (0, 1)
> 0 if `t = 0

∆(nt, λ) ≡ λwtht(v + st − θ`t)− γ2

[
1
nt

+
(1− qt)
2n2

t qt

]
(5c)

= 0 if nt ∈ (0,
1
v
)

< 0 if nt =
1
v
,

where λ is the multiplier attached to the budget constraint and ∆(xt, λ) is the derivative of
the Lagrangian with respect to xt. Conditions (5a) and (5b) require that the marginal utility
of schooling or child labor supply is larger or equal than the marginal utility of (forgone)
consumption. The third equation (5c) requires that the marginal utility of children (quantity)
is larger or equal to the lost income in terms of consumption.

Because of the various constraints these conditions need not be satisfied always with equal-
ity. In fact, some of the binding constraints and the associated corner solutions will be defining

6An alternative interpretation is that 1/v is a social norm for the maximum number of children.
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features of different stages of development. The inequality signs below the FOC’s for the in-
terior solutions provide the intuition for the corner solutions. Obviously, schooling and labor
supply have always a unique solution (either interior or corner solution). The equation for
the optimal number of children is nonlinear in nt. Nevertheless, it can be shown that there
is either a corner or a unique interior solution with a strictly positive number of children.7

The intuition behind these results is that marginal utility is bounded for corner solutions in
(5a) and (5b) but unbounded from below for the number of newborns. Thus, parents will
avoid zero children at any cost but corner solutions with zero schooling or zero child labor are
possible. We will discuss the solution to the model in detail further below.

Since each adult has nt children but only a share qt survives to the next period, the
population growth rate is given by

gN = Lt+1/Lt − 1 = ntqt − 1,(6)

where Lt is the size of the adult population at period t.

Equations (5b), (5a) and (5c) can be solved analytically to obtain closed form solutions.
We do this for schooling and labor supply but show the optimal number of children only as
an implicit function of the survival rate.8 Assume that the survival rate is low and parents
do not invest into human capital but have working children. Then parents only choose child
labor supply and the number of children:

`t =
γ1

γ1 + γ3
− (1− ntv)γ3

ntθ(γ1 + γ3)
(7a)

nt

[
nt(v − θ)γ1 + γ3

1− nt(v − θ)
− γ2

]
= γ2

1− qt

2qt
(7b)

After some time, the survival rate may have increased sufficiently to induce parents to invest
into schooling. The optimal choice of schooling, child labor and number of children is given
by:

st =
ξγ2

nt(γ1 + ξγ2 + γ3)
− (v − θ)ξγ2 + s

¯
(γ1 + γ3)

(γ1 + ξγ2 + γ3)
(8a)

`t =
γ1 + ξγ2

(γ1 + ξγ2 + γ3)
− (1− nt(v − s

¯
))γ3

ntθ(γ1 + ξγ2 + γ3)
(8b)

nt

[
nt(v − s

¯
− θ)γ1 + ξγ2 + γ3

1− nt(v − s
¯
− θ)

− γ2

]
= γ2

1− qt

2qt
(8c)

If for some survival rate child labor is endogenously abandoned, parents decide about optimal
7In fact , this is a quadratic equation and in appendix A it is shown that it has always a positive and a negative root.
8Since nt is a quadratic equation it is possible to obtain a closed form solution. However, the result is rather cumbersome

and is of no use for the remainder of the paper.
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schooling and children according to:

st =
ξγ2

nt(γ1 + ξγ2)
− vξγ2 + s

¯
γ1

(γ1 + ξγ2)
(9a)

nt

[
nt(v − s

¯
)γ1 + ξγ2

1− nt(v − s
¯
)

− γ2

]
= γ2

1− qt

2qt
(9b)

Assume that qt and preferences are such that neither schooling nor child labor supply are
positive at the optimal solution. Then parents face only a fertility-consumption trade off.
The number of children is then implicitly defined by

nt

[
vγ1nt

1− ntv
− γ2

]
= γ2

1− qt

2qt
(10)

In principle there is also one “pathological” solution to the household problem. Assume that
s
¯

= 0 and that parents’ valuation of child leisure γ3 is very low. For a low survival rate it is
possible that the number of children equals the maximum fertility limit 1/v with child labor
and schooling being both positive. Put differently, due to high uncertainty parents wish to
have as many children as possible but then children finance parents’ consumption and their
own schooling by working. We exclude this case by a restriction on the model’s parameters.

The solution to the households’ maximization problem reveals that the nature of household
solution does not change qualitatively during the different stages of development. Schooling
decreases with the number of children (quantity-quality trade off) and child labor is higher
if the number of children is higher. Which regime prevails thus depends on the parameter
constellation. By the choice of the parameters (mainly θ, s

¯
and γ3) one can obtain all possible

solutions ranging from no child labor and no schooling to an interior solution with simultaneous
working and schooling or a realistic solution for low mortality environments without child labor
but schooling investment.

The optimal reaction of the household to exogenous changes in the survival rate are sum-
marized in the following propositions.

Proposition 1. If the survival rate is increasing the number of newborns nt is decreasing.

Proof. See appendix A.

Proposition 2. If the survival rate is increasing schooling is increasing (if positive) and child

labor is decreasing (if positive).

Proof. See appendix A.

Proposition 3. There exists always a survival rate q̃l low enough such that optimal schooling

is zero if ∂ht+1/∂st < ∞. If preferences and relative child productivity θ are such that child

labor is optimal for qt < q̃l, then the threshold value q̃l is an increasing function of θ.

10



Proof. From equations (8a) or (9a) we see that schooling is a negative function of the number

of children. Thus, there is threshold value ñt such that schooling is zero. Using proposition 1

we can conclude that there is a survival rate low enough such that nt ≥ ñt and thus ensuring

st ≤ 0. The second part can be proven by using that ∂ñt/∂θ > 0. The claim ∂q̃t/∂θ > 0

follows then from the fact that the cross derivative of the left hand side of (8c) or (7b) with

respect to {nt, θ} ∀nt ∈ (0, 1/v] is negative and the derivative of the right hand side is

decreasing in qt. Thus, with rising θ and consequently rising nt for st = 0 to hold, we need a

higher survival rate.

Propositions 1 and 2 are the results of the interaction of lower precautionary child demand
and a quantity-quality trade off. If child survival risk is falling, the number of children will
decrease – even without schooling. This is the consequence of falling uncertainty and thus
falling precautionary demand for children. With a decreasing number of children parents
move out from the corner solution and will endow each offspring with education. Proposition
3 states that if the chance of children to survive to adulthood is low enough, parents will
rather invest into quantity and will not endow their offspring with human capital. Moreover,
the higher relative child labor productivity, the more likely is that parents will have many
children and schooling will be delayed. The intuition is that if the child survival rate is at
very low levels, parents would like to have a very high number of offspring to make sure that
at least some of them survive. Since they also have a quantity-quality trade off, they will
opt for zero schooling. On the other hand the more children can earn, the less costly they
are. Thus, high child productivity increases the opportunity costs of schooling which explains
why the number of children at the threshold q̃t is higher (∂ñt/∂θ > 0) and schooling will be
delayed (∂q̃t/∂θ > 0).

The behavior of the population growth rate gN is a nonlinear and non-monotonic function
of the survival rate which is summarized below:

Proposition 4. Population growth is hump-shaped and has exactly one local maximum if

there is no solution to the household problem with `t > 0 and st > 0 simultaneously (i.e. no

interior solution). If there exists an interior solution, then the population growth rate has the

above property only if the population growth rate with child labor and schooling (i.e. interior

solution) satisfies

∂gN

∂q

∣∣∣∣
nt=ñt

≥ 0,(11)

or if the regime without child labor but schooling satisfies

∂gN

∂q

∣∣∣∣
nt=ñt

≤ 0,(12)

where ñt = γ3

γ3(v−s
¯

)+θ(γ1+ξγ2) is the number of children where child labor is endogenously aban-
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doned. If one of the two conditions is violated, then the population growth rate has two local

maxima.

Proof. See appendix A.

For low qt, rising survival probability dominates the drop in the number of children and
population growth increases. Intuitively, for large survival risk small changes in the survival
probability will not change the optimal solution for nt much. For vanishing survival risk we
have the opposite effect. If the incentive to educate children is strong enough, parents will
decrease precautionary demand for children and additionally invest more time into each child.
Therefore, population growth will decrease at high levels of qt. The possible “complications”
are caused by the fact that at ñt the slope of ∂nt/∂qt becomes less steep (the number of children
is still falling but at a lower pace). This is counterbalanced by rising survival probabilities
which increases the population growth rate. Which effect will dominate in the end depends
on the parameters of the model.

Proposition 5. If relative child productivity increases, the number of newborns increases.

Proof. See appendix A.

Proposition 6. If relative child productivity increases child labor increases and schooling

decreases.

Proof. See appendix A.

The economic interpretation is quite intuitive. If children become relatively more produc-
tive on the labor market, the opportunity cost of child leisure goes up and thus child labor
supply should rise. At the same time, the cost of children decreases. This is why the number
of offspring rises. Schooling decreases because parents are engaged in a quantity-quality trade
off.

3.3 The Steady State Solution

Assume that the economy grew out from poverty, the child survival rate approaches unity
and child labor is abandoned. Then, we are back in a standard Becker-type model with a
quantity-quality decision of the parents where only preferences (and some parameters from the
human capital production function) determine the solution. Optimal education and number
of children are then

nss =
(1− ξ)γ2

(v − s
¯
)(γ1 + γ2)

(13a)

sss =
(1− nssv)ξγ2

nss(γ1 + ξγ2)
− s

¯
γ1

γ1 + ξγ2
(13b)

=
vξ − s

¯
1− ξ
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The results confirm the intuition behind the model. Higher fixed costs of children v, higher
education productivity ξ increases education, higher fixed costs of education s

¯
, decrease edu-

cation. Obviously, the opposite is true for the number of children.9

4 The Macroeconomy

There is one sector producing a homogenous good used for consumption. The production
technology uses human capital and an exogenously given amount of land. Output is then
produced according to

Yt = AtH
α
t T 1−α(14)

where Ht is human capital, T is the fixed amount of land and At is the level of TFP which
grows over time. The fixed amount of land captures the Malthusian nature of the model.
In absence of growth in Ht or At, a growing population will obviously drive down income
per capita. Aggregate human capital is the sum of inelastic adult labor supply and the
endogenously determined labor supply of children. I assume that children’s and adults’ labor
are perfect substitutes. Aggregate human capital is then

Ht = ht(Lt + Ltθ`tnt)(15)

where Lt is the number of adults at time t and θ`tnt is the effective labor supply of children.
Substituting into equation (14) and rearranging we have

Yt = Ath
α
t (LtL̃t)αT 1−α(16)

where L̃t ≡ 1+θ`tnt. Thus, LtL̃t is total labor supply in the economy. Following the literature
(Galor and Weil (2000), Kögel and Prskawetz (2001)), the return to land is zero and income
equal average labor productivity with

yt = Yt/(LtL̃t) = Ath
α
t (LtL̃t)α−1T 1−α.(17)

Here, yt is also the income of a family unit consisting of one adult and the children contributing
ntθ`t to total labor supply.10 In a developed economy without child labor, family and per
capita income are identical (L̃t = 1). The growth rate of efficiency wages is

gy
t = gA

t + αgh
t − (1− α)(gL

t + gL̃
t ).(18)

Note that in steady state without child labor and stationary population the solution collapses
to gy = gA as in any growth model. During the transition, growth of human capital, changes

9Note that with certain survival, mortality does not play a role for the optimal number of children and therefore population
growth will monotonically increase with qt. In such a setup, the number of children will be constant trough time and only a
quantity-quality trade off is able to generate a demographic transition.

10Income per capita would be smaller than yt since θ and `t are both smaller than unity.
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in child labor supply and population dynamics affect the growth rate of wages. Equivalently,
we can express the dynamics of income per family as

yt+1 = yt(1 + gA
t )(s

¯
+ st)ξα(ntqt)α−1

(
1 + θnt+1`t+1

1 + θnt`t

)α−1

(19)

where we have substituted ht+1, population growth and L̃t+1 out.

5 General Equilibrium

This section puts the household solution and the macroeconomic production side together. To
close the model we develop the relationships and feedback effects between income, population,
technological progress and survival rates. The last subsection presents the simulation results
from a calibration exercise using realistic parameter values and data.

5.1 Technological progress

The level of technology At is evolving according to

At = At−1(1 + gA
t−1)(20)

where gA
t−1 is the growth rate of technology. Technological progress is determined by the size

of the adult population Lt and the schooling investment st with11

gA
t = g(Lt, st) gA

t,L > 0 gA
t,s > 0 gA

t (Lt, 0) > 0.(21)

Technological progress depends here on the size of the population which introduces a strong
scale effect. Although there is no clear empirical evidence for this specification in modern
economies (Jones (1995)), the assumption seems to be true for a large part of human history
(Kremer (1993), Galor and Weil (2000), Diamond (1998)).12 Alternative specifications impos-
ing some exogenous minimum gA

t if there is no schooling investment and population is below
a threshold level lead to similar results. Note that this specification allows for a transitory
effect of a larger population on technological progress in a sense that a growing population
leads to an acceleration of gA. In the case of a stationary population technological progress
can further accelerate if investment into human capital is positive.

5.2 Survival Law

We assume that idiosyncratic survival risk washes out and the survival rate evolves determin-
istically on the aggregate level . The survival rate of children qt ∈ (0, 1] is a function of income

11One could also assume that gA depends on the level of human capital which is the same as to assume that it depends
on education since human capital is a function of education.

12On the other hand see Crafts and Mills (2007) for the opposite evidence.
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per capita yt−1 and is given by

qt = q(yt−1)(22)

with positive first and negative second derivatives and lim
yt→∞

qt → 1. Income per capita enters

the survival law in a Malthusian fashion. Falling income per capita decreases the survival
probability of children which decreases population (growth) in the next period. By including
yt−1 instead of yt excludes contemporaneous feedback effects of the number of children on the
survival law.13

5.3 The Dynamical System

The solution to the household problem is the foundation of the dynamic simulation. Given
an initial child survival rate q0 we can solve the household problem. Then, given an initial
adult population L0 and initial technological level A0 we can feed in the households’ decisions
into the macroeconomic framework to calculate wages, population, technological progress and
survival rates for the next period. Given these values, the entire system can be simulated.
Before presenting the simulation results, we first derive some analytical results describing the
dynamic behavior of the system. Using equation (19) and expressing all endogenous variables
in terms of yt and yt−1 we have

yt+1 = yt[1 + gA
t (Lt, st(yt−1))][s¯

+ st(yt−1)]ξα ×(23)

[nt(yt−1)qt(yt−1)]α−1

[
1 + θnt+1(yt)`t+1(yt)
1 + θnt(yt−1)`t(yt−1)

]α−1

Lt+1 = Ltnt(yt−1)qt(yt−1)

where st = st(nt(qt(yt−1))), nt(qt(yt−1)) and `t(nt(qt(yt−1))). This is a two dimensional (L, y)
second order non-linear difference equation which is analytically not tractable. The “non-
tractability” comes from the fact that the population growth rate is not a monotone function
of yt−1. It can be seen that ∂yt+1/∂yt > 0, ∂gA

t /∂yt−1 > 0 and ∂`t/∂yt−1 < 0. This
is all increasing next period’s income. The fact that ∂nt/∂yt−1 < 0 but ∂qt/∂yt−1 > 0
makes a statement about the qualitative behavior of the system impossible. Assume that the
population growth rate is rising as a consequence of rising survival rates which lowers income.
This is counterbalanced by technological progress, rising human capital and falling child labor
which pushes available resources per worker up. Thus, if the three factors contributing to rising
productivity outweigh the diluting effect of population growth, income will grow, otherwise
fall.

Figure 5 shows three simple possible functional forms for the relationship between today’s
and tomorrow’s income per capita.14 As can be seen, the strictly concave function has only
one solution allowing only for a low income equilibrium (y1

s). Thus, in absence of shifts in
technology, income will always converge back to this stable solution. In the case of a strictly

13This simplifying assumption is needed because otherwise child labor, income and hence survival rates are jointly deter-
mined in general equilibrium. Although this is certainly the more realistic assumption, we abstract from this complication
since it does not add any additional insights.

14There is a fourth solution which is slightly less interesting. If yt+1 is strictly convex in yt−1 (and the slope is larger than
unity at the origin) income is growing without bound for all initial values of income, population, and technological progress.
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Figure 5: Solutions to the Difference Equation, gA(Lt) given
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convex function, there are two solutions. If the economy starts out below the threshold y2
g ,

income will converge to zero without technological progress. Otherwise, the economy will
transit into a regime with endogenous growth. The S-shaped function allows also for two
solutions: one stable Malthusian equilibrium (y2

s) and a growing economy (yt > y1
g). Changes

in the size of the population and the induced change in the pace of technological progress causes
a shift of the curves. As shown in figure 6 a rising population shifts the curves outward.

Note that due to the dependence of q on income and gA on the population size, the economy
can be in a situation with temporarily falling income, falling survival rates but accelerating
technological progress. In this case there is a “horse-race” between the diluting effect of
population size on income on the one hand and positive effect on technological progress on
the other hand. In the figure, we simultaneously move along the y-schedule to the left and
shift the curve outwards due to higher technical progress. The net effect may go in either
direction. Such a situation can happen if a country has an initial income per capita (and
thus qt) such that population is growing but the country is not large enough to generate a
sufficiently high level of technological progress. Income and survival rates fall reducing gL

further and thus slowing down the growth rate of gA. If technological progress does not catch
up with population growth, the economy falls back to the Malthusian equilibrium. However,
even if income temporarily falls back to the Malthusian level, the economy will not necessarily
stay there forever.

Proposition 7. If technological progress depends positively on the population size, the econ-

omy stays in the Malthusian equilibrium if

−∂2gA(Lt, 0)/∂L2
t

∂gA(Lt, 0)/∂Lt
Lt = 1,

which is nothing else than requiring the elasticity of the marginal product of population with
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Figure 6: Solutions to the Difference Equation, gA(Lt) varying
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respect to population size to be unity.

Proof. Start with equation (18), assume that schooling is zero (which implies gh = 0) and use

the fact that child labor supply is constant (gL̃ = 0). Due to the Malthusian steady state

assumption we have gy = 0 implying gA(Lt−1(1 + gL), 0) = (1 − α)gL where we have used

Lt = Lt−1(1 + gL). Taking the derivative with respect to population growth gives

∂gA

∂Lt
Lt−1 = 1− α.

With positive population growth this can only hold for all Lt if gA is strictly concave in the

population size and

∂2gA

∂Lt
Lt +

∂gA

∂Lt
= 0

holds. Rearranging this equation proves the claim.

The previous proposition states that the growth rate of TFP should not accelerate “to
fast”, or the rate of increase has to decrease fast enough to just counterbalance population
growth.15 Then, income per capita will stay constant and so will the survival rate. Note that
if we impose an exogenous growth rate ḡA for TFP or alternatively we put an upper bound
on gA

t (Lt, 0) = ḡA for all Lt > L̄ then there is a threshold value for ḡA or for the population
size L̄ which will determine whether the economy will grow or stay underdeveloped.

15Note that for this condition to hold as Lt goes to infinity, the marginal product of Lt has to go to zero.
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The fact whether child labor or schooling are optimal changes only the slope of the curves
at the regime switching point. If schooling becomes optimal the slope increases, a regime
change to zero child labor flattens the slope at all income levels. Shocks to income per capita
(and implicitly survival rate) or relative child productivity have thus the potential to lift the
economy out of a development trap.

However, if mortality rates are sufficiently high, a ban of child labor (by setting θ = 0) is
not a guarantee for a kickoff of the development process. As suggested in proposition 3 the
value of qt beyond which parents invest into education decreases with θ but if qt < q̃t then
education will be nevertheless zero.16 Thinking in dynamic terms, eradicating child labor has
a positive effect on average wages, survival rates and therefore the number of future newborns
will drop which induces parents to send children to school earlier. Thus, abolishing child labor
may not have immediate benefits for growth but will pay off only in the future.

5.4 A calibration exercise

This subsection contains a calibrated version of the model and discusses the dynamic devel-
opment of the economy. Obviously, this highly stylized model will not be able to capture the
complexity of the real world. Due to the simple structure we can only focus on a limited
number of calibration targets. Therefore, the primary target of this section is to demonstrate
that this type of model is able to track observed historical developments and provide some
quantitative guidance. For an easier comparison with real data the model’s predictions are
transformed into annualized growth rates according to gx

r = (1 + gx
m)1/J − 1 where gx

r,m are
the growth rates for real (r) and model time (m) for variable x and J is a proxy for the length
of a period and chosen to be 20. Although this choice is common in the literature (Lagerlöf
(2006), Boldrin and Jones (2002)) one has to keep in mind that this has a a large effect on the
growth rates when transformed from the generational time dimension to yearly growth rates.

In order to simulate the entire system we need to fix parametric forms for the equations
determining the evolution of the survival rate and technological progress. We choose

qt+1 = 1− ϕ1

yϕ2
t

(24)

gA
t = ω1L

λ1
t + ω2s

λ2
t .(25)

These functional forms satisfy the conditions outlined above and the parameters were cali-
brated to provide realistic time paths for the endogenous variables. The exact functional form
is not important for the qualitative behavior of the system.

The calibration targets on the household level were the number of children (fertility) and
income share generated by working children. Total fertility rate in the 19th century fluctuated
around 5 in European countries (Galor (2005)) and according to Patrinos and Psacharopoulos
(1997) working children in Peru contributed around 14% to family income. Historical numbers
are less reliable but are in the same order of magnitude. Assuming that woman’s wages are
around 50% of men (Galor (2005), page 233), children contribute in our model about 14% to
family income at the beginning of the development process. The human capital production
function was calibrated by choosing s

¯
such that there is a corner solution and ξ was taken from

16See Patrinos and Psacharopoulos (1997) on this issue who also argue that due to income effects, not working does not
automatically imply that children are attending school.
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Browning et al. (1999). The weights in the utility function were calibrated such that there is
a regime with child labor but no schooling, an intermediate regime with working and learning
children and finally a situation without child labor. Further, we choose the parameters of the
household model such that population is stationary in steady state.

On the macroeconomic level we want to generate the typical inverted U-shape for popu-
lation growth, initially low growth of wages but accelerating growth rate of TFP (and equiv-
alently of wages) as soon as schooling becomes optimal and asymptotic convergence of child
mortality to zero. For growth of wages we use the numbers from Hansen and Prescott (2002)
as a calibration target. The share of human capital in the production function is also taken
from the same source. The remaining parameters of equation (25) and (24) have no empirical
counterparts17 but were calibrated such that the model is able to generate an economic and
demographic transition within a sensible time period of about 20 generations. As can be seen
in the graphs below, the largest part of the decrease in mortality risk and the demographic
transition is achieved within this time window. Also the adjustment of schooling, wage growth
and number of children from initial to near steady state levels is completed within a reasonable
period. All parameters and initial conditions are summarized in table 1.

Table 1: Summary of Parameters and Initial Conditions

Household v 0.33 γ1 0.30
s
¯

0.20 γ2 0.60
ξ 0.80 γ3 0.10
θ 0.09

Survival Rate ϕ1 0.24
ϕ2 0.90

TFP Growth ω1 0.06 ω2 1.80
λ1 0.20 λ2 1.50

Production Function α 0.60

Initial Conditions A0 1 T 40
L0 10 q0(y0) 0.5

As a first step, in figure 7 we look at the household solutions generated by the baseline
calibration from table 1. The number of children is high but decreasing due to falling mortal-
ity.18 Due to rising survival rates, parents decrease their precautionary demand for children.
At this stage of development this is the only reason why fertility is falling. Obviously, this
is not the main source of the demographic transition.19 Education is initially not zero and
child labor supply is positive. Later, the survival rate approaches the critical threshold above

17We only know from several studies (Cutler et al. (2006), Kalemli-Ozcan (2003)) that there is a concave relationship
between income and survival probabilities which dictates ϕ2 < 1.

18In this graph the number of children is shown as per family which is twice the number from the model solution where
each individual is allowed to have children.

19This result is also confirmed by Doepke (2005) who finds that a reduction in survival risk reduces total fertility but
eventually concludes that the dramatic fall in the net reproduction rate (number of surviving daughters) must have been
caused by other factors than declining child or infant morality.
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which optimal education becomes investment becomes positive. From this point in time on-
wards parents face also an additional quantity-quality trade off. The falling precautionary
demand is now augmented by the quantity-quality trade off. Thus, the optimal number of
offsprings starts to drop dramatically. Simultaneously, child labor is decreasing and later en-
dogenously abandoned. The entire adjustment process from high fertility, high child labor
and no schooling environment to a situation without child labor, low fertility and schooling
investment is completed in less than 15 generations. The panel in the south-east of the graph
shows the share of income spent on consumption. During the development process, parents
not only decrease fertility but increase spending on the quality of children but are also able
to increase own consumption.

Figure 7: General Equilibrium Simulation - Household
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Figure 8 shows the time paths of several macroeconomic variables. Initially, the population
growth rate is around 1% but starts rising as mortality (panel to the right) falls, reaches
the maximum level at 1.7% and drops then monotonically to the steady state value of no
population growth (by construction). The reason for the accelerating population growth is
the insufficient drop in the number of children. As can be seen in the household solution
the number of children is falling as the survival rate increases. However, this drop is not
enough to counterbalance falling mortality. Thus, the total effect is that population growth
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is rising. The demographic transition starts to unfold only as parents start to invest into
schooling. This can also be seen from the panel displaying the evolution of wage and TFP
growth. Initially, the growth rate of TFP is just enough to counterbalance the growth of
population and hence income per capita is growing only slowly.20 This is also reflected in
only small increases of the survival rate. However, as the survival rate passes the critical
threshold value agents start to educate children which boosts growth of TFP and wages. This
feeds back into falling mortality and falling population growth. Eventually, child mortality
is almost eliminated and the model converges to its steady state solution with a constant
household decisions and constant growth rates. In this calibration, the contribution of the
scale effect (Lt) and of schooling to technological progress is approximately the same.

Figure 8: General Equilibrium Simulation - Macro
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It can be already seen in graph 7 that the number of newborns decreases only slightly if
schooling is zero. The falling fertility is only due to falling survival risk. However, it is rather
obvious that this effect is not enough to bring fertility down to levels low enough generating a
genuine demographic transition. Observe that in figure 8 for low values of q the population is
growing even with falling fertility. This result is not driven by the choice of parameters but it

20Initially TFP growth is only fueled by rising population since educational investment is zero.
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is rather a general feature of the model. Figure 9 shows the elasticity of the number of birth
with respect to the survival rate for different parameter constellations.21 We generate three
different scenarios ranging from a situation where child labor and schooling do no not overlap
(labeled “no interior solution”) to the situation in which children attend school and work at
the same time (labeled “interior solution”) and a parameter constellation without child labor
but positive schooling over the entire range of q (labeled “no child labor”). To generate this
solutions we have to adjust some parameters of the model but leave the initial conditions
unchanged. We set θ = 0 in order to obtain the solution without child labor. The graph
without an interior solution is created by setting s

¯
= 0.24 and γ3 = 0.4 which corresponds

to a situation in which child labor is abandoned early, followed by a situation without child
labor (but still no schooling) and positive schooling investment only later.

It can be seen that without schooling, the elasticity is rather small (and always well below
unity) without the potential to generate a demographic transition. The necessary condition is
the introduction of a quantity-quality trade off via the investment into schooling. This result
is rather insensitive to the parameter choice.

Figure 9: Elasticity of Children w.r.t. Mortality
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6 Conclusion

This paper analyzes the dynamic co-movement of fertility, schooling and child labor assuming
that child survival is uncertain. In early stages of development the economy is characterized
by low income, high mortality, high fertility and child labor. Due to rising technological
progress, however, income starts to grow and so will the survival probability of children.

21Note that these graphs have the survival rate q on the horizontal axis.

22



Therefore parents will start to decrease their precautionary demand for children. Because the
pure effect of falling mortality is not sufficient to generate a large quantitative change in the
number of children, the population growth rate is still accelerating and thus the growth rate
of resources per capita is rather low. At some point, however, parents will start to invest
into schooling accelerating the development process. This change will induce a sizable drop
in fertility which is the trigger of a demographic transition. Eventually population growth
starts to decline and the economy converges to a balanced growth equilibrium. Along the
development process child labor will be abandoned as parents decide to shift more resources
to child quality and the need for many offsprings (due to high mortality) vanishes.

We show that child labor has an adverse effect on development in a sense that even if parents
value child leisure, child labor will delay investment into schooling. If the survival chances of
children are sufficiently low a ban of child labor, however, does not necessarily induce parents
to invest into schooling. On the other hand, the model’s prediction is that the effect of falling
mortality alone is not sufficient to induce a large behavioral change. Thus, the demographic
transition can only be explained by the rise of education and thus a quantity-quality trade
off.

On the macroeconomic side we analyze the conditions for stagnation and endogenous
growth. Without a link between population size and technological progress (or an upper
bound on technological progress) the economy can be stuck in a Malthusian equilibrium with
low income, high fertility, child labor and no human capital investment or transit into an
endogenous growth regime which characterizes modern economies. The outcome depends on
the parameters of the model and therefore multiple equilibria are possible. If technological
progress depends on the size of the population the economy is likely to escape from the domain
of attraction of the Malthusian “trap” except a knife-edge condition is satisfied.
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A Proofs

Proof of proposition 1 (nt is decreasing in qt). Rewriting the first order conditions from

the text and rearranging them gives

F (nt, qt) = nt

[
nt(v − s

¯
− θ)γ1 + ξγ2 + γ3

1− nt(v − s
¯
− θ)

− γ2

]
− γ2

1− qt

2qt
`t > 0, st > 0(26a)

F (nt, qt) = nt

[
nt(v − θ)γ1 + γ3

1− nt(v − θ)
− γ2

]
− γ2

1− qt

2qt
`t > 0, st = 0(26b)

F (nt, qt) = nt

[
nt(v − s

¯
)γ1 + ξγ2

1− nt(v − s
¯
)

− γ2

]
− γ2

1− qt

2qt
`t = 0, st > 0(26c)

F (nt, qt) = nt

[
vγ1nt

1− ntv
− γ2

]
− γ2

1− qt

2qt
`t = 0, st = 0(26d)

Each of these equations implicitly defines nt = nt(qt). Note that the left part (the left hand

side in the FOC) is only a function of nt and the the right part (the right hand side in the

FOC) is only a function of qt. Thus, the effect of changing survival probabilities on the optimal

number of children is given by

∂nt

∂qt
= − ∂F (·)/∂qt

∂F (·)/∂nt
(27)

Further, the behavior of the RSH for limiting cases of qt is given by

lim
qt→1

RHS = 0(28a)

lim
qt→0

RHS = ∞(28b)

The LHS deserves more discussion. First observe that it holds that

lim
nt→0

LHS = 0(29a)

lim
nt→1/v

LHS


= ∞ if `t = 0, st = 0

< ∞ else
(29b)

This implies that for all cases limnt→1/v LHS < ∞ (i.e. the birth limit is binding) there is a

lower bound q̃t which satisfies F (nt, qt) = 0. For all qt < q̃t the solution is nt = 1/v.

To determine the sign of ∂nt/∂qt we need to evaluate the derivatives of RHS and LHS.
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The RHS of all cases is identical. Taking the derivative with respect to qt gives

∂F (nt, qt)
∂qt

= γ2
1

2q2
t

> 0 ∀ qt ∈ (0, 1).(30)

The derivative of the LHS depends on the scenarios and is given by the following equations

∂F (nt, qt)
∂nt

=
ntṽγ1(2− ntṽ) + ξγ2 + γ3

(1− ntṽ)2
− γ2 `t > 0, st > 0(31a)

ṽ ≡ v − s
¯
− θ

∂F (nt, qt)
∂nt

=
ntṽγ1(2− ntṽ) + γ3

(1− ntṽ)2
− γ2 `t > 0, st = 0(31b)

ṽ ≡ v − θ

∂F (nt, qt)
∂nt

=
ntṽγ1(2− ntṽ) + ξγ2

(1− ntṽ)2
− γ2 `t = 0, st > 0(31c)

ṽ ≡ v − s
¯

∂F (nt, qt)
∂nt

=
ntvγ1(2− ntv)

(1− ntv)2
− γ2 `t = 0, st = 0(31d)

We have now to evaluate each of the cases in the range of all possible solutions for nt. For

the case of interior solutions we have

∂F (nt, qt)
∂nt

∣∣∣∣
nt=0

= γ3 − γ2(1− ξ)(32a)

∂F (nt, qt)
∂nt

∣∣∣∣
nt=

1
v

=

(
1−

(
α+θ

v

)2)
γ1 + γ3(

α+θ
v

)2 + γ2

(
ξ(

α+θ
v

)2 − 1

)
(32b)

For the case without schooling but child labor

∂F (nt, qt)
∂nt

∣∣∣∣
nt=0

= γ3 − γ2(32c)

∂F (nt, qt)
∂nt

∣∣∣∣
nt=

1
v

=

(
1−

(
θ
v

)2)
γ1 + γ3(

θ
v

)2 − γ2(32d)
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For the case without child labor but schooling

∂F (nt, qt)
∂nt

∣∣∣∣
nt=0

= γ2(ξ − 1)(32e)

∂F (nt, qt)
∂nt

∣∣∣∣
nt=

1
v

=

(
1−

(
α
v

)2)
γ1(

α
v

)2 + γ2

(
ξ(
α
v

)2 − 1

)
(32f)

However, if the model’s parameters are such that there is a steady state with qt = 1 and

schooling but no child labor, then the parameter restriction ξ > α
v has to hold. Using this it

is clear that the second parenthesis is positive. And for the case with zero schooling but also

no child labor

∂F (nt, qt)
∂nt

∣∣∣∣
nt=0

= −γ2(32g)

∂F (nt, qt)
∂nt

∣∣∣∣
nt=

1
v

= ∞(32h)

Further, it can be shown under the parameter restrictions (essentially assumptions 1 and 3)

the following holds

∂F (nt, qt)
∂nt

∣∣∣∣
nt=

1
v

>
∂F (nt, qt)

∂nt

∣∣∣∣
nt=0

(33)

∂2F (nt, qt)
∂n2

t

=
2(v − s

¯
− θ)(γ1 + ξγ2 + γ3)

(−1 + n(v − s
¯
− θ))3

< 0(34)

This ensures monotonicity of the derivatives. If assumptions 1 or 3 are violated then ∂F/∂n

may turn positive leading to two possible positive solutions.

Proof of proposition 2 (∂st/∂qt > 0 and ∂`t/∂q < 0). Use equations (8a) and (9a), take

the derivative with respect to qt and use the result ∂nt/∂qt < 0 from proposition 1. Then the

claim

∂st

∂qt
=

ξγ2

γ1 + ξγ2 + γ3

−∂nt/∂qt

n2
t

> 0,(35)

is established where for the solution without child labor the parameter γ3 is set to zero. To

prove that child labor is decreasing if the survival probability increases use equations (8b) and

26



(7a) and take the derivative with respect to qt. The result is

∂`t

∂qt
= − γ3

γ1 + γ3 + ξγ2

−∂nt/∂qt

n2
t

< 0(36)

where we again use the result ∂nt/∂qt < 0 from proposition 1. In case of a solution without

schooling we have to set ξγ2 = 0 which does not change the sign.

Proof of proposition 4 (population growth is a hump-shaped function). Rewriting equa-

tions (8c), (7b), (9b) and (10) as

F (nt, qt) ≡ nt

(
ntṽγ1 + ξγ2 + γ3

1− ntṽ
− γ2

)
− γ2

1− qt

2qt
= 0(37)

where ṽ, ξγ2 and γ3 depend on the optimal regime (see equations in the text). Denoting

the population growth factor as Lt+1/Lt ≡ gN and using Lt+1/Lt = ntqt gives nt = gN/q.

Inserting this into the above equation and rearranging gives

F (gN , qt) ≡ 2g2
N ṽγ1 + (gN ṽ − q)(1 + 2gN − q)γ2 + 2gNq(γ3 + ξγ2)(38)

The change in population growth as a function of the survival rate is then

∂gN

∂q
= − ∂F/∂q

∂F/∂gN
=

−γ2 + (2q − gN (ṽ + 2))γ2 + gN2(γ3 + ξγ2)
−γ2ṽ(1 + 2gN − q) + 2(γ2q − 2gN ṽγ1)− 2q(γ3 + ξγ2)

.(39)

At q = 0 and gN = 0 this gives 1/ṽ which is always positive.22 However, if q = 1 we have

gN = (1−ξ)γ2

(v−s
¯
)(γ1+γ2) from the steady state solution with positive schooling and no child labor.

Using this gives

∂gN

∂q
=

(gN (2 + ṽ)− 1)γ2 − 2gNξγ2

4gN ṽγ1 − 2(1− 2ṽgN )γ2 + 2ξγ2
(40)

Assuming that schooling has high returns, i.e. ξ is approaching unity, the derivative is unam-

biguously negative. However, for all ξ the condition ensuring declining population growth at

high survival rates is

(1− ξ)γ2

ṽ(γ1 + γ2)
(2(1− ξ) + ṽ) < 1.(41)

22This does not imply that the population growth rate is positive. It only means that it is increasing.
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where we have used gN as specified as above.

The proof for the non-monotonic behavior of the shape (i.e. second derivative) involves

two steps. First, observe that the population growth rate is a strictly concave function of

the survival rate (and therefore for all regimes). Assume now that we have parameter values

and a qt such that we have an interior solution with positive schooling and child labor. Thus,

if ∂gN/∂q < 0 evaluated at ñt
23 holds, then then gN at this point must be below the local

maximum. Further note that we can rewrite

∂gN

∂qt
=

∂nt

∂qt
qt + nt(42)

which implies that

∂gN

∂qt

∣∣∣∣
`,s>0

<
∂gN

∂qt

∣∣∣∣
`=0,s>0

.(43)

Second, it follows that if ∂gN/∂q < 0 evaluated at ñt is negative for the solution without

child labor but positive schooling (i.e. after the regime switch), then this derivative must be

smaller (i.e. more negative). Due to strict concavity, gN drops monotonically to the steady

state value. If the derivative is positive, then there will be a second local maximum because

the population growth rate will rise to a second local maximum.

On the other hand, if ∂gN/∂q > 0 holds for the interior solution then the population

growth rate will continue to rise after the endogenous regime switch (see derivative above)

and eventually start to decline after a local maximum converging monotonically to the steady

state value.

Proof of proposition 5 (∂nt/∂θ > 0). Use equations (8c) and (7b), redefine ṽ ≡ v−α and

ϕ ≡ ξγ2 + γ3 if schooling and labor are interior and ṽ ≡ v and ϕ ≡ γ3 if only child labor is

optimal. Then, the first order condition for children can be written as

F (nt, θ) = nt

[
nt(ṽ − θ)γ1 + ϕ

1− nt(ṽ − θ)
− γ2

]
− γ22

1− qt

qt
(44)

23Recall that ñt is the point where the household endogenously switches from the interior regime to the regime without
child labor but schooling.
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The result can be established by showing that

∂nt

∂θ
= − ∂F/∂θ

∂F/∂nt
> 0.(45)

Proof of proposition 6 (∂`t/∂θ > 0 and ∂st/∂θ ≷ 0). Use equations (8b) and (7a), rede-

fine ṽ ≡ v − s
¯

and ϕ ≡ ξγ2 if schooling and labor supply are interior. Otherwise ṽ ≡ v and

ϕ ≡ 0. Taking then the derivative with respect to θ is

∂`t

∂θ
= − γ3

γ1 + ϕ + γ3

(
−∂nt

∂θ θ − (1− ntṽ)nt

(ntθ)2

)
> 0,(46)

where we use the fact that ∂nt/∂θ > 0 from proposition 5. To show the relationship between

schooling and relative productivity use equation (8a) and take the derivative with respect to

θ. The result is

∂st

∂θ
=

ξγ2

γ1 + ξγ2 + γ3

(
1− ∂nt/∂θ

n2
t

)
≷ 0(47)

where ∂nt/∂θ > 0 from proposition 5. The result that ∂st
∂θ < 0 cannot be established analyti-

cally since it depends on the equilibrium value of nt. However, in the numerical simulations it

turns out that the equilibrium solution is always such that the claim above always holds.

Proof that nt has always a positive and a negative root if there is an. unrestricted

(i.e. interior) solution. Using equation (5c) and replacing λ with γ1/ct gives

γ1

ct
wtht(v + st − θ`t) = γ2

[
1
nt

+
(1− qt)
2n2

t qt

]
.(48)

Rearrange this equation to obtain

− γ1

γ2

wtht(v + st − θ`t)
ct

n2
t + nt +

1− qt

2qt
= 0.(49)

Solving this quadratic equation for nt proves the claim.
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B Approximation of Expected Utility

Approximation of Expected Utility Maximization. The 3rd order Taylor series approx-

imation of the utility function U(ntqt) = log ntqt around the mean n̄t is

U(ntqt) = log n̄t + (n̄t − ntqt)
1
n̄t
− (n̄t − ntqt)2

2!
1
n̄2

t

+
(n̄t − ntqt)

3!
2
n̄3

t

.(50)

Taking expectations gives then the result in the paper. The first term is evaluated at the mean,

the second term vanishes due to E[n̄t − ntqt] = 0, the third term is just E[(n̄t − ntqt)2] =

V ar(ntqt) = ntqt(1 − qt) and the last term is also zero because of the symmetry of the

binomial distribution. Since we use a utility function which is unbounded from below and a

distribution with mass on zero, we would have to include an arbitrary small constant into the

utility function. However, this would not affect any of the results.
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