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Abstract

Psychological evidence suggests that people�s learning behavior is often prone

to a �myside bias�or �irrational belief persistence�in contrast to learning behav-

ior exclusively based on objective data. In the context of Bayesian learning such

a bias may result in diverging posterior beliefs and attitude polarization even if

agents receive identical information. Such patterns cannot be explained by the

standard model of rational Bayesian learning that implies convergent beliefs. As

our key contribution, we therefore develop formal models of Bayesian learning with

psychological bias as alternatives to rational Bayesian learning. We derive condi-

tions under which beliefs may diverge in the learning process and thus conform

with the psychological evidence. Key to our approach is the assumption of am-

biguous beliefs that are formalized as non-additive probability measures arising in

Choquet expected utility theory. As a speci�c feature of our approach, our models

of Bayesian learning with psychological bias reduce to rational Bayesian learning

in the absence of ambiguity.
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1 Introduction

Several studies in the psychological literature demonstrate that people�s learning be-

havior is prone to e¤ects such as �myside bias� or �irrational belief persistence� (cf.,

e.g., Baron 2007, Chapter 9). For instance, in a famous experiment by Lord, Ross, and

Lepper (1979), subjects supporting and opposing capital punishment were exposed to

two purported studies, one con�rming and one discon�rming their existing beliefs about

the deterrent e¢ cacy of the death penalty. Despite the fact that both groups received

the same information, their learning behavior resulted in an increased �attitude polar-

ization� in the sense that their respective posterior beliefs, either in favor or against

the deterrent e¢ cacy of death penalty, further diverged. Analogous results on diverging

posterior beliefs in the face of identical information have earlier been reported by Pitz,

Downing, and Reinhold (1967) and Pitz (1969) in the context of Bayesian updating of

subjective probabilities. In violation of Bayes� update rule the subjects in these ex-

periments formed biased posteriors that supported their original opinions rather than

taking into account the evidence. The learning behavior elicited in these experiments

cannot be explained by the standard model of rational Bayesian learning according to

which di¤erences in agents�prior beliefs must decrease rather than increase whenever

the agents receive identical information. Models of rational Bayesian learning thus ap-

parently ignore relevant aspects of real-life people�s learning behavior.

In this paper we present formal models of Bayesian learning that allow for the pos-

sibility of a �myside bias�. As our point of departure we assume that the paradigm of

rational Bayesian learning may only be violated by agents who have ambiguous beliefs.

That is, the beliefs of such agents cannot be described by additive probability measures

alone but they additionally re�ect the agent�s personal attitudes. The impact of new

information on an agent�s beliefs is then two-fold. On the one hand, we take into ac-

count �rational�updating based on objective empirical evidence in accordance with the

standard rational Bayesian learning hypothesis (cf., Tonks 1983; Viscusi and O�Connor

1984; Viscusi 1985). On the other hand, however, we also assume existence of a �myside

bias�which results in an �irrational�enforcement of the agents�personal attitudes.

Our formal model is developed in two steps. In a �rst step we model ambiguous beliefs

as non-additive probability measures, i.e., capacities, which arise in Choquet Expected

Utility (CEU) theory (Schmeidler 1989; Gilboa 1987).1 More speci�cally, we consider

neo-additive capacities in the sense of Chateauneuf, Eichberger and Grant (2006) such

that an agent�s non-additive belief about the likelihood of an event is a weighted average

1CEU theory was originally developed to describe ambiguity attitudes that may explain Ellsberg

paradoxes (Ellsberg 1961).
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of an ambiguous part and an additive part. According to our interpretation, the additive

part of the agent�s belief is her best estimator for the �true�probability of a given event.

The ambiguous part of her belief is relevant whenever the agent lacks absolute con�dence

in this estimator. This lack of con�dence is resolved in our model by a parameter that

measures the agent�s optimistic versus pessimistic personal attitudes with respect to

ambiguity.

In a second step we model the updating of ambiguous beliefs. According to our

understanding of Bayesian learning, an agent with absolute con�dence in her additive

estimator should behave as a rational Bayesian learner. As a consequence, we assume

that the additive part of the agent�s posterior beliefs is governed by the standard rational

Bayesian learning model of Viscusi (1985). In case there exists some ambiguity, we con-

sider speci�c Bayesian update rules expressing di¤erent psychological attitudes towards

the interpretation of new information (Gilboa and Schmeidler 1993). In particular, we

analyze the consequences of the so-called full Bayesian (Pires 2002; Eichberger, Grant,

and Kelsey 2006; Sinischalchi 2001, 2006) as well as the optimistic and the pessimistic

update rules (Gilboa and Schmeidler 1993). An application of these update rules to

some prior belief where the agent expresses ambiguity results in a Bayesian learning

process that di¤ers from rational Bayesian learning in that convergence to the �true�

probabilities of some objective random process will - in general - not emerge. Rather,

updating of beliefs reenforces optimistic, respectively pessimistic, attitudes of the agent

thereby giving rise to learning behavior with a �myside bias�.

Using this framework we then analyze the beliefs of two heterogeneous agents who

have some prior beliefs, receive identical information and then update their beliefs ac-

cording to some Bayesian update rule with psychological bias. Thereby, we di¤erentiate

between a weak and a strong form of myside bias. The weak form of myside bias is

characterized by diverging posterior beliefs of the agents under repeated learning with

identical information whereby the beliefs may move into the same direction. According

to our interpretation the strong form of myside bias is equivalent to attitude polariza-

tion in that the posterior beliefs of the two agents move into opposite directions under

repeated learning with identical information. To derive our main results we then con-

sider two scenarios: In our �rst scenario the two agents have di¤erent initial beliefs and

update their beliefs based on the same information by applying the same update rule.

In our second scenario, the two agents receive the same information but apply di¤erent

update rules. In both scenarios the resulting posterior beliefs may exhibit the weak as

well as the strong form of myside bias. Notice that, in order to derive our result in the

second scenario, we do not require that the agents have identical initial priors.
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The remainder of our analysis is structured as follows. Section 2 presents the standard

model of rational Bayesian learning of non-ambiguous beliefs and section 3 introduces

ambiguous beliefs. Section 4 discusses updating of ambiguous beliefs under the three

di¤erent update rules � full Bayesian, optimistic and pessimistic updating � that we

consider in this paper. Section 5 then presents our main results on weak and strong

myside bias in the form of diverging beliefs and attitude polarization. Finally, section 6

concludes.

2 Rational Bayesian learning

Consider the situation of an agent who is uncertain about the probability of an event, E,

but can observe a statistical experiment with n independent trials where E is a possible

outcome in each trial. Let

S = �1i=0 fE;:Eg

denote the experiment�s sample space, whereby :E is the complement of E, and de�ne

Sn = �ni=0 fE;:Eg ,
S�n = �1i=n+1 fE;:Eg .

We can then formally describe the agent�s information structure by the partitions

P (n) = ffyg � S�n j y 2 Sng

where n = 0; 1; :::;1 denotes the n-th trial of the experiment. Denote by y� the vector of

outcomes observed by the agent. Since fy�g�S�n 2 P (n), after the n-th trial the agent
knows the outcomes of the �rst n trials but not the outcomes of the remaining trials. For

example, while the agent is totally ignorant with respect to the experiment�s outcome

before the �rst trial, i.e., P (0) = fSg, she has perfect information after in�nitely many
trials, i.e., P (1) = ffyg j y 2 Sg.
Suppose that the agent has a prior Beta probability distribution over the � parameter

of a Binomial-distribution where � (E) is the �true�probability of outcome E.2 Further

suppose that the agent resolves her uncertainty about � by an estimator ~� (E) that is

the expected value of this Beta-distribution, i.e., ~� (E) = �
�+�

for given distribution

parameters �; � > 0. More speci�cally, the prior Beta distribution has probability

density

f (�) =

(
K�;��

��1 (1� �)��1 for 0 � � � 1
0 else

2This Beta distribution model of rational Bayesian learning was introduced in the economic literature

by Viscusi and O�Connor (1984) and Viscusi (1985).
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where K�;� is a normalizing constant.3 Let In � S denote the event that E has occurred
k-times in n trials. Obviously, the information In is known to the agent after n trials since

we have for the true outcome fy�g�S�n � In. Further, denote by f (� j In) the posterior
probability density conditional on this sample information. Since the probability of

receiving information In for a given � is, by the Binomial-assumption,

f (In j �) =
�
n

k

�
�k (1� �)n�k ,

we obtain by Bayes�rule

f (� j In) =
f (In j �) f (�)

~� (In)

= K�+k;�+n�k�
�+k�1 (1� �)�+n�k�1

whenever ~� (In) =
Z
f (In j �) f (�) d� > 0.

Observe that the agent�s subjective posterior distribution over � is a Beta-distribution

with expected parameters � + k; � + n � k. Accordingly, the agent�s posterior belief is
given by the expected value of the posterior distribution, �+k

�+�+n
, which, using that the

prior belief is ~� (E) = �
�+�

and denoting the sample mean by �n =
k
n
, we can rewrite as

~� (E j In) =
�

�+ �

�+ � + n

�
~� (E) +

�
n

�+ � + n

�
�n: (1)

That is, the agent�s posterior is a weighted average of her prior and the sample mean

whereby the weight attached to the sample mean increases in the number of trials.4

Since, for every c > 0, limn!1 prob (j�n � � (E)j � c) = 1 we obtain the following result
for this standard model of rational Bayesian learning.

Proposition 1: Under the assumption of ~� (In) > 0 for all n the posterior belief

~� (E j In) converges in probability to the true probability of event E if the number

of trials, n, approaches in�nity.

As a consequence, the standard model of rational Bayesian learning cannot account

for the learning behavior of agents whose posterior beliefs systematically diverge while

they receive the same information.

3In particular, K�;� =
�(�+�)
�(�)�(�) where � (y) =

1Z
0

xy�1e�xdx for y > 0.

4Tonks (1983) introduces a similar model of rational Bayesian learning in which the agent has a

normally distributed prior over the mean of some normal distribution and receives normally distributed

information.
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3 Ambiguous beliefs

We assume that individuals exhibit ambiguity attitudes in the sense of Schmeidler (1989)

and who may thus, for example, commit paradoxes of the Ellsberg type (Ellsberg 1961).

Following Schmeidler (1989) and Gilboa (1987), we describe such individuals as Choquet

Expected Utility (CEU) decision makers, that is, they maximize expected utility with

respect to non-additive beliefs. Properties of non-additive beliefs are used in the litera-

ture for formal de�nitions of, e.g., ambiguity and uncertainty attitudes (Schmeidler 1989;

Epstein 1999; Ghirardato and Marinacchi 2002), pessimism and optimism (Eichberger

and Kelsey 1999; Wakker 2001; Chateauneuf, Eichberger, and Grant 2006), as well as

sensitivity to changes in likelihood (Wakker 2004). Our own approach focuses on non-

additive beliefs that are de�ned as neo-additive capacities in the sense of Chateauneuf,

Eichberger and Grant (2006).

De�nition. For a given measurable space (
;F) the neo-additive capacity, �, is de-
�ned, for some �; � 2 [0; 1] by

� (E) = � � (� � !o (E) + (1� �) � !p (E)) + (1� �) � ~� (E) (2)

for all E 2 F such that ~� is some additive probability measure and we have for

the non-additive capacities !o

!o (E) = 1 if E 6= ;
!o (E) = 0 if E = ;

and !p respectively

!p (E) = 0 if E 6= 

!p (E) = 1 if E = 
.

Recall that a Savage-act f is a mapping from the state space 
 into the set of

consequences X. For a �nite state space the Choquet expected utility of Savage act f

with respect to a neo-additive capacity � is given as

CEU (f; �) = ��
�
� �max

s2

u (f (s)) + (1� �) �min

s2

u (f (s))

�
+(1� �)�

X
s2


~� (s)�u (f (s)) ,

(3)

where u : X ! R is a von Neumann-Morgenstern utility function. Neo-additive capac-
ities can be interpreted as non-additive beliefs that stand for deviations from additive
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beliefs such that a parameter � (degree of ambiguity) measures the lack of con�dence the

decision maker has in some subjective additive probability distribution ~�. Obviously, if

there is no ambiguity, i.e., � = 0, (3) reduces to the standard subjective expected utility

representation of Savage (1954). In case there is some ambiguity, however, the second

parameter � measures how much weight the decision maker puts on the best possible

outcome of alternative f when resolving her ambiguity. Conversely, (1� �) is the weight
she puts on the worst possible outcome of f . As a consequence, we interpret � as an

�optimism under ambiguity� parameter whereby � = 1, resp. � = 0, corresponds to

extreme optimism, resp. extreme pessimism, with respect to resolving ambiguity in the

decision maker�s belief.

Finally, observe that for non-degenerate events, i.e., E =2 f;;
g, the neo-additive
capacity � in (2), simpli�es to

� (E) = � � �+ (1� �) � ~� (E) : (4)

4 Updating ambiguous beliefs

In contrast to EU preferences, CEU preferences give rise to several possibilities for

deriving ex post preferences, i.e., preferences conditional on the fact that some event

has occurred, from ex ante preferences. In this section we focus attention on three

perceivable Bayesian update rules for non-additive probability measures and apply them

to neo-additive capacities. As such we discuss the so-called full (or generalized) Bayesian

update rule (Eichberger, Grant, and Kelsey 2006), as well as the optimistic and the

pessimistic update rules (Gilboa and Schmeidler 1993).

De�ne the Savage-act fIh : 
! X such that

fIh (s) =

(
f (s) for s 2 I
h (s) for s 2 :I

where I is some event. Recall that Savage�s sure-thing principle claims that, for all acts

f; g; h; h0 and all events I,

fIh � gIh implies fIh0 � gIh0.

Let us interpret event I as new information received by the agent. The sure-thing

principle then implies a straightforward way for deriving preferences �I , conditional on
the new information I, from the agent�s original preferences � over Savage-acts. Namely,
we have

f �I g if and only if fIh � gIh for any h, (5)
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implying for a subjective expected utility maximizer

f �I g if and only if EU (f; � (� j I)) � EU (g; � (� j I))

whereby � (� j I) is the additive conditional probability measure derived from the Bayesian
update rule, i.e., for all E 2 F ,

� (E j I) = � (E \ I)
� (I)

.

In order to accommodate ambiguity attitudes as elicited in Ellsberg paradoxes, CEU

theory drops the sure-thing principle. As a consequence, conditional CEU preferences

are no longer derivable from (5) since the speci�cation of the act h is now relevant (see

Gilboa and Schmeidler 1993; Pires 2002; Eichberger, Grant and Kelsey 2006; Sinischalchi

2001, 2006 for a discussion of di¤erent Bayesian update rules).

Let us at �rst consider conditional CEU preferences satisfying, for all acts f; g,

f �I g if and only if fIh � gIh

where h is the so-called conditional certainty equivalent of g, i.e., h is the constant act

such that g �I h. The corresponding Bayesian update rule for the non-additive beliefs
of a CEU decision maker is the so-called full Bayesian update rule which is given as

follows (Eichberger, Grant, and Kelsey 2006)

�FB (E j I) = � (E \ I)
� (E \ I) + 1� � (E [ :I) (6)

where �FB (E j I) denotes the conditional capacity for event E 2 F given information

I 2 F .

Observation 2: Let E; I =2 f;;
g and E \ I 6= ?. Then an application of the full
Bayesian update rule (6) to a prior belief (4) results in the posterior belief

�FB (E j I) = �FBI � �+
�
1� �FBI

�
� ~� (E j I) (7)

such that

�FBI =
�

� + (1� �) � ~� (I) . (8)

Proof: If E; I =2 f;;
g and E \ I 6= ?, then
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�FB (E j I) =
� � �+ (1� �) � ~� (E \ I)

� � �+ (1� �) � ~� (E \ I) + 1� (� � �+ (1� �) � ~� (E [ :I))

=
� � �+ (1� �) � ~� (E \ I)

1 + (1� �) � (~� (E \ I)� ~� (E [ :I))

=
� � �+ (1� �) � ~� (E \ I)

1 + (1� �) � (~� (E \ I)� ~� (E)� ~� (:I) + ~� (E \ :I))

=
� � �+ (1� �) � ~� (E \ I)
1 + (1� �) � (�~� (:I))

=
� � �+ (1� �) � ~� (E \ I)

� + (1� �) � ~� (I)

=
� � �

� + (1� �) � ~� (I) +
(1� �) � ~� (I)

� + (1� �) � ~� (I) ~� (E j I)

= �FBI � �+
�
1� �FBI

�
� ~� (E j I)

with �FBI given by (8).�

In addition to the full Bayesian update rule we also consider so-called h-Bayesian

update rules for preferences � over Savage acts as introduced by Gilboa and Schmeidler
(1993). That is, we consider some collection of conditional preference orderings,

�
�hI
	

for all events I, such that for all acts f; g

f �hI g if and only if fIh � gIh (9)

where

h = (x�; A;x�;:A) ; (10)

with x� denoting the best and x� denoting the worst consequence possible and A 2 F .
For the so-called optimistic update rule h is the constant act where A = ;. That is,
under the optimistic update rule the null-event, :I, becomes associated with the worst
consequence possible. Gilboa and Schmeidler (1993) o¤er the following psychological

motivation for this update rule:

�[...] when comparing two actions given a certain event I, the decision maker implicitly

assumes that had I not occurred, the worst possible outcome [...] would have

resulted. In other words, the behavior given I [...] exhibits �happiness�that I has

occurred; the decisions are made as if we are always in �the best of all possible

worlds�.�

As corresponding optimistic Bayesian update rule for conditional beliefs of CEU

decision makers we obtain
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�opt (E j I) = � (E \ I)
� (I)

: (11)

Observation 3: Suppose E; I =2 f?;
g. An application of the optimistic update rule
(11) to a prior belief (4) results in the conditional belief

�opt (E j I) = �optI +
�
1� �optI

�
� ~� (E j I)

with

�optI =
� � �

� � �+ (1� �) � ~� (I) .

Proof: Applying the optimistic Bayesian update rule to a neo-additive capacity
gives, for E =2 f?;
g,

�opt (E j I) =
� � �+ (1� �) � ~� (E \ I)
� � �+ (1� �) � ~� (I)

=
� � �

� � �+ (1� �) � ~� (I) +
(1� �) � ~� (I)

� � �+ (1� �) � ~� (I) � ~� (E j I)

= �optI +
�
1� �optI

�
� ~� (E j I)

such that

�optI =
� � �

� � �+ (1� �) � ~� (I) .

�

For the pessimistic (or Dempster-Shafer) update rule h is the constant act where

A = 
, associating with the null-event,:I, the best consequence possible. Gilboa and
Schmeidler (1993):

�[...] we consider a �pessimistic�decision maker, whose choices reveal the hidden as-

sumption that all the impossible worlds are the best conceivable ones.�

The corresponding pessimistic Bayesian update rule for CEU decision makers is

�pess (E j I) = � (E [ :I)� � (:I)
1� � (:I) : (12)
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Observation 4: Suppose E; I =2 f?;
g. An application of the pessimistic update rule
(12) to a prior belief (4) results in the conditional belief

�pess (E j I) = (1� �pessI ) � ~� (E j I)

with

�pessI =
� � (1� �)

� � (1� �) + (1� �) � ~� (I) .

Proof: Applying the pessimistic Bayesian update rule to a neo-additive capacity
gives, for E =2 f?;
g,

�pess (E j I) =
� (E [ :I)� � (:I)

1� � (:I)

=
� � �+ (1� �) � ~� (E [ :I)� � � �� (1� �) � ~� (:I)

1� � � �� (1� �) � ~� (:I)

=
(1� �) � ~� (E)

1� � � �� (1� �) � (~� (:I)) �
(1� �) ~� (E \ :I)

1� � � �� (1� �) � (~� (:I))

=
(1� �) � ~� (E)

1� � � �� (1� �) � (~� (:I)) �
(1� �) ~� (:I)

1� � � �� (1� �) � (~� (:I)) ~� (E j :I)

=
(1� �) � ~� (E)

1� � � �� (1� �) � (~� (:I))

� (1� �) ~� (:I)
1� � � �� (1� �) � (~� (:I))

�
~� (E)� ~� (E j I) � ~� (I)

~� (:I)

�
=

(1� �) � ~� (I)
� � (1� �) + (1� �) � ~� (I) � ~� (E j I)

= (1� �pessI ) � ~� (E j I)

such that

�pessI =
� � (1� �)

� � (1� �) + (1� �) � ~� (I) .

�

5 Diverging posteriors and attitude polarization

In this section we derive our main results which formally link the updating of ambiguous

beliefs to diverging posteriors and attitude polarization in Bayesian learning behavior.

Consider two agents i 2 f1; 2g and let

�i (E) = �i�i + (1� �i) � ~�i (E)
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denote the belief of agent i. If a posterior belief �i (E j In), i 2 f1; 2g, converges in
probability to a unique limit, we simply write this limiting posterior belief as �i (E j I1).
That is, �i (E j I1) satis�es for every c > 0

lim
n!1

prob (j�i (E j In)� �i (E j I1)j � c) = 1.

We assume that both agents receive the same information, i.e., P1 (n) = P2 (n) =
P (n) for all n. Our formal de�nition of �attitude polarization�captures the idea that
the agents�posteriors diverge rather than converge when their initial beliefs are di¤erent

despite the fact that they receive the same information. Moreover, we allow for the

possibility that the agents can observe arbitrarily many trials and consider posterior

beliefs that obtain in the limit.

Our �rst assumption ensures that the standard model of Bayesian learning discussed

in section 2 obtains as a special case whenever the beliefs are non-ambiguous, i.e., � = 0.

Assumption 1: If agent i 2 f1; 2g updates a neo-additive priors �i (E) conditional
on information In, then the additive part of her posterior belief, i.e., ~�i (E j In),
conforms with rational Bayesian learning (1) whereby ~�i (In) > 0 for all n.

By the following assumption, we restrict attention to the case in which di¤erences

in initial beliefs of agents can only be due to their respective optimism parameters �i,

i 2 f1; 2g, under ambiguity.

Assumption 2: Both agents have identical additive estimators, i.e., ~�1 (E) = ~�2 (E) =
~� (E) for all E 2 F , as well as identical degrees of ambiguity, i.e., �1 = �2 = �.

Since the information partitions P (n) become �ner with increasing n, the corre-
sponding sample information forms a nested sequence of events I0 � I1 � ::: � I1. The
sequence of subjective probabilities ~� (I0) ; ~� (I1) ; ::: is therefore monotonically decreas-

ing, implying the existence of a unique limit point

lim
n!1

~� (In) = ~� (I1) 2 [0; 1] .

Together with the above assumptions and proposition 1 this fact allows us to characterize

the convergence behavior with respect to the di¤erent update rules discussed in section
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4. By proposition 1, we have for the additive part of the beliefs convergence to the true

probability of event E, i.e.,

lim
n!1

prob (j~� (E j In)� � (E)j � c) = 1

for every c > 0, so that we �nd for i 2 f1; 2g:

Lemma

(i) Full Bayesian learning. For E; I =2 f;;
g and E \ I 6= ?,

�FBi (E j I1) = �FBI1 � �i +
�
1� �FBI1

�
� � (E)

with

�FBI1 =
�

� + (1� �) � ~� (I1)

(ii) Optimistic Bayesian learning. For E; I =2 f;;
g,

�opti (E j I1) = �optI1 +
�
1� �optI1

�
� � (E)

with

�optI1 =
� � �i

� � �i + (1� �) � ~� (I1)

(iii) Pessimistic Bayesian learning. For E; I =2 f;;
g,

�pessi (E j I1) =
�
1� �pessI1

�
� � (E)

with

�pessI1
=

� � (1� �i)
� � (1� �i) + (1� �) � ~� (I1)

We are now ready to state and prove our main results. To focus our analysis we only

consider interesting di¤erences between the two heterogeneous agents. In particular, we

di¤erentiate between two relevant cases of heterogeneity. On the one hand, we consider

full Bayesian learners who have di¤erent initial attitudes with respect to optimism under

ambiguity implying di¤erent prior beliefs. On the other hand, we consider agents who

may have identical prior beliefs but have di¤erent, i.e., optimistic resp. pessimistic,

attitudes with respect to the interpretation of new information. As our �rst main result

(proposition 2) we identify conditions under which posterior beliefs diverge such that the

directed distance between the posterior beliefs of the two agents is strictly greater than

13



the directed distance between their priors. That is, we consider diverging posteriors in

the sense that

�1 (E j I1)� �2 (E j I1) > �1 (E)� �2 (E) (13)

where �1 (E) � �2 (E). For example, if there is an initial gap in the prior beliefs, the

repeated learning of identical information will widen this gap whereby the posteriors

may move in the same direction. We also refer to this divergence in beliefs as a weak

form of myside bias.

Proposition 2. (Diverging Posteriors)

(i) Assume that both agents are full Bayesian learners. Then inequality (13) is
satis�ed if and only if � 2 (0; 1), �1 > �2, and ~� (I1) < 1.

(ii) Assume that agent 1 is an optimistic whereas agent 2 is a pessimistic Bayesian
learner. Then inequality (13) is satis�ed if � 2 (0; 1), �1 � �2, and ~� (I1) <
�1 � 1� �2.

Proof:
Part (i). Let �1 > �2 and observe that, by the lemma, (13), i.e.,

�I1 � �1 + (1� �I1) � � (E)� (�I1 � �2 + (1� �I1) � � (E))
> � � �1 + (1� �) � ~� (E)� (� � �2 + (1� �) � ~� (E)) ,

is equivalent to �I1 > �, i.e.,

�

� + (1� �) � ~� (I1)
> �,

which holds if and only if � 2 (0; 1) and ~� (I1) < 1. Finally, observe that �1 � �2

violates (13).

Part (ii). By the lemma, (13) now becomes

�optI1 +
�
1� �optI1

�
� � (E)�

�
1� �pessI1

�
� � (E)

> ��1 + (1� �) � ~� (E)� (��2 + (1� �) � ~� (E)) ,

which is equivalent to

�optI1 +
�
�pessI1

� �optI1
�
� � (E) > � (�1 � �2) .
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This last inequality is obviously satis�ed for all � (E) and � 2 (0; 1) if �optI1 > �, i.e.,

� � �1
� � �1 + (1� �) � ~� (I1)

> � ,

�1 > ~� (I1) ,

and �pessI1
� �optI1, i.e.,

� � (1� �2)
� � (1� �2) + (1� �) � ~� (I1)

� � � �1
� � �1 + (1� �) � ~� (I1)

,

1� �2 � �1.

Finally, observe that �1 < �2 violates the assumption �1 (E) � �2 (E).�

Our second main result (proposition 3) focuses on conditions that ensure attitude

polarization. Attitude polarization in our sense is a stronger concept than mere diver-

gence of posteriors in that it additionally requires that the posteriors move in opposite

directions. More speci�cally, we consider attitude polarization such that

�1 (E j I1) > �1 (E) � �2 (E) > �2 (E j I1) . (14)

In order to further focus our analysis we thereby restrict attention to the case in which

the subjective estimator coincides with the objective probability, i.e., ~� (E) = � (E).

Proposition 3. (Attitude Polarization)

(i) Assume that both agents are full Bayesian learners and let ~� (E) = � (E) 2
(0; 1). Then inequality (14) is satis�ed if and only if � 2 (0; 1), �1 > �2,

~� (I1) < 1, and

�1 > � (E) > �2. (15)

(ii) Assume that agent 1 is an optimistic whereas agent 2 is a pessimistic Bayesian
learner and let ~� (E) = � (E) 2 (0; 1). Then inequality (14) is satis�ed if
� 2 (0; 1), �1 � �2, and

~� (I1) < min f�1; 1� �2g . (16)

Proof:
Part (i). For full Bayesian learners (14) becomes

�I1 � �1 + (1� �I1) � � (E) > � � �1 + (1� �) � ~� (E)
� � � �2 + (1� �) � ~� (E) > �I1 � �2 + (1� �I1) � � (E) ,
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which obviously implies �1 > �2 and thereby the middle inequality is strict. Under

the assumption ~� (E) = � (E), the �rst and the last inequality then hold if and only if

�I1 > �, i.e., � 2 (0; 1) and ~� (I1) < 1, compare proposition 2, part (i), as well as

�1 > � (E) > �2,

which proves the result.

Part (ii). Consider at �rst agent 1. Observe that

�1 (E j I1) > �1 (E),
�optI1 +

�
1� �optI1

�
� � (E) > � + (1� �) � ~� (E)

which, under the assumption that ~� (E) = � (E), is equivalent to �optI1 > �, i.e.,

� � �1
� � �1 + (1� �) � ~� (I1)

> �.

This proves that � 2 (0; 1) and ~� (I1) < �1 are necessary and su¢ cient conditions for
�1 (E j I1) > �1 (E).
Consider now agent 2 and observe that

�2 (E) > �2 (E j I1),
� + (1� �) � ~� (E) >

�
1� �pessI1

�
� � (E),

� + (1� �) � ~� (E) >

�
(1� �) � ~� (I1)

� � (1� �2) + (1� �) � ~� (I1)

�
� � (E)

which, under the assumption that ~� (E) = � (E), necessarily holds for any � > 0 if

~� (I1)

� � (1� �2) + (1� �) � ~� (I1)
< 1,

�2 < 1� ~� (I1) .

This proves the result.�

Remark. While our results of propositions 2(i) and 3(i) are driven by the initial gap
in prior beliefs, the results of propositions 2(ii) and 3(ii) build upon the di¤erent learning

rules of the agents. According to condition (15) attitude polarization for full Bayesian

learners rather occurs if the di¤erence in initial beliefs is large, i.e., strong optimism of

agent 1 versus strong pessimism of agent 2. Observe that, under the assumptions of

proposition 3(ii), condition (16) ensures attitude polarization for an arbitrary ambiguity

parameter � 2 (0; 1) and arbitrary probability � (E) 2 (0; 1). In contrast to the �nding
for full Bayesian learners, we may therefore encounter attitude polarization for optimistic

and pessimistic Bayesian learners even in the case of identical prior beliefs if ~� (I1) is

su¢ ciently small.
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6 Conclusion

To account for phenomena such as �myside bias� or �irrational belief persistence� in

people�s learning behavior we propose formal models in which the interpretation of

new information is prone to psychological bias. Based on a simpli�ed representation of

ambiguous beliefs we develop parsimonious representations of the agent�s initial beliefs

and updating processes. Thereby, we focus attention on three alternative update rules

that are characterized by di¤erent degrees of optimism, respectively pessimism, in the

interpretation of new information. As a speci�c feature to our approach, the resulting

models of Bayesian learning with psychological attitudes reduce to the standard model of

rational Bayesian learning in the absence of ambiguity. However, we show that a model

with rational Bayesian learning alone results in convergent beliefs and is therefore not a

suitable framework to account for phenomena such as a myside bias.

We then develop a two heterogeneous agents setting to derive divergent posterior

beliefs and attitude polarization for the agents� learning processes under ambiguity.

Attitude polarization is de�ned as a stronger condition than divergent beliefs in that the

posterior beliefs of the two agents move into opposite directions. While we assume that

the agents receive the same information, the agents may have di¤erent prior beliefs or

apply di¤erent learning rules. Two main �ndings emerge:

1. We may observe divergent posterior beliefs and attitude polarization for agents

who have identical attitudes with respect to the interpretation of new information

but have di¤erent initial attitudes with respect to optimism, resp. pessimism,

under ambiguity;

2. We may observe divergent posterior beliefs and attitude polarization in case the

agents have identical initial attitudes with respect to optimism, resp. pessimism,

under ambiguity but have di¤erent attitudes with respect to the interpretation of

new information.

Our stylized Bayesian learning models thus formally accommodate two alternative

scenarios of a �myside bias�. In a �rst scenario, a �myside bias�in the learning process

arises because of personal attitudes towards the resolution of ambiguity. In a second

scenario, a �myside bias�corresponds to personal attitudes towards the interpretation

of information.

In future research we aim to apply our approach to topics in information economics

that are typically analyzed under the assumption of rational Bayesian learning such as

�ctitious play in strategic games (see, e.g., Fudenberg and Kreps 1993; Fudenberg and

Levine 1995; Krishna and Sjostrom 1998) or no-trade results (see, e.g., Milgrom and
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Stokey 1982; Morris 1994; Neeman 1996; Zimper 2007). Along the line of heterogeneous

agent models that depart from the rational expectations or rational Bayesian learning

paradigms, our approach may also have promising implications for asset pricing models

(see, e.g., Cecchetti, Lam, and Mark 2000; Abel 2002; Ludwig and Zimper 2006) and

theories of the wealth distribution (see, e.g., Ameriks, Caplin, and Leahy 2003).
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