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Abstract: Important empirical information on household behavior is obtained from 
surveys. However, various interdependent factors that can only be controlled to a limited 
extent lead to unit and item nonresponse, and missing data on certain items is a frequent 
source of difficulties in statistical practice. This paper presents the theoretical under-
pinnings of a Markov Chain Monte Carlo multiple imputation procedure and applies this 
procedure to a socio-economic survey of German households, the SAVE survey. I discuss 
convergence properties and results of the iterative multiple imputation method and I 
compare them briefly with other imputation approaches. Concerning missing data in the 
SAVE survey, the results suggest that item nonresponse is not occurring randomly but is 
related to the included covariates. The analysis further indicates that there might be 
differences in the character of nonresponse across asset types. Concerning the 
methodology of imputation, the paper underlines that it would be of particular interest to 
apply different imputation methods to the same dataset and to compare the findings. 
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1 Introduction 

Important empirical information on household behavior is obtained from surveys. 

However, various interdependent factors that can only be controlled to a limited extent, 

such as privacy concerns, respondent uncertainty, cognitive burden of the questions, and 

survey context, lead to unit nonresponse and item nonresponse. Unit nonresponse is the 

lack of any information for a contacted survey participant and as such is the strongest type 

of refusal. The phenomenon that only a subset of the information is missing, e.g. only the 

response to the question on household income, is referred to as item nonresponse.  

The general phenomenon of item nonresponse to questions in household surveys as 

well as problems of statistical analysis with missing data have been analyzed by various 

authors, beginning with the work by Ferber (1966) and Hartley and Hocking (1971); see 

Beatty and Herrmann (2002) as well as Rässler and Riphahn (2006) for reviews. Recent 

examples for Germany, focusing on income, saving, and asset choice, are Biewen (2001), 

Frick and Grabka (2005), Riphahn and Serfling (2005), and Schräpler (2003) who work 

with data from the German Socio-Economic Panel (GSOEP). Finally, Essig and Winter 

(2003) describe and analyze nonresponse patterns to financial questions in the first wave 

of the German SAVE survey. They exploit that this first wave has included a controlled 

experiment specifically designed to analyze the effects of interview mode and question 

format on answering behavior. 

The German SAVE study (Schunk, 2006) focuses on details of households' finances, 

as well as households' sociological and psychological characteristics. For the large 

majority of variables in SAVE, item nonresponse is not a problem. For example, there is 

hardly any nonresponse to detailed questions about socio-demographic conditions of the 

household, to questions about households’ expectations and about indicators of household 

economic behavior. Mainly due to privacy concerns and cognitive burden, though, there 

are significantly higher item nonresponse rates for detailed questions about household 

financial circumstances than for other less private and less sensitive questions. Tables 1 

and 2 show that these questions can have a missing rate of over 40%. Similar missing rates 

for questions about financial circumstances have been documented in various socio-

economic survey contexts (e.g., Bover, 2004; Hoynes et al., 1998; Juster and Smith, 1997; 

Kalwij and van Soest, 2005).  

 

 

 



 3

Table 1: Response rates for monthly net income and for the question about total annual 
saving. 

Value Bracket Unknown

Net income 69% 25% 6%
Annual saving 88% 12%

 
Note: Calculations are unweighted and based on the 2003/2004 wave of the SAVE data. 

 

Table 2: Response rates for financial and real wealth items. 

Yes No Unknown

Savings/term accounts 56% 36% 8% 74%
Building society savings agreements 26% 66% 8% 67%
Whole life insurance policies 28% 64% 8% 57%
Bonds 8% 84% 8% 57%
Shares & real-estate funds 18% 74% 8% 61%
Owner occupied housing 47% 49% 4% 96%

Have item Value reported for 
those having the item

 
Note: Calculations are unweighted and based on the 2003/2004 wave of the SAVE data. 

 

For studies that use the detailed financial information in the SAVE study, missing 

information on one of those variables is a problem. It is tempting and still very common to 

simply delete all observations with missing values. But deleting observations with item 

nonresponse, i.e. relying on a complete-case analysis, might lead to an efficiency loss due 

to a smaller sample size and to biased inference when item nonresponse is related to the 

variable of interest.2 Particularly for multivariate analyses that involve a large number of 

covariates, case deletion procedures can discard a high proportion of subjects, even if the 

per-item rate of missingness is rather low. 

The purpose of this paper is to present and discuss the theoretical underpinnings and 

the practical application of an iterative multiple imputation method that has been 

developed for the German SAVE dataset. Missing item values are imputed controlling for 

observed characteristics of nonrespondents and respondents in order to preserve the 

correlation structure of the dataset as much as possible. The method yields a multiply 

imputed and complete data set that can be analyzed by the public using standard software 

packages without discarding any observed cases. In contrast to single imputation, multiple 

imputation allows the uncertainty due to imputation to be reflected in subsequent analyses 

of the data (see, e.g., Rubin, 1987; Rubin, 1996; Rubin and Schenker, 1986).  

                                                 
2 See, e.g., Rubin (1987) and Little and Rubin (2002) for discussions about efficiency and bias in a missing 
data context. 
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Iterative multiple imputation methods have recently been applied to other large-scale 

socio-economic survey data (Barceló, 2006; Bover, 2004; Kennickell, 1998). The 

imputation method for the U.S. Survey of Consumer Finances, developed by Arthur 

Kennickell, has recently been applied to the Spanish Survey of Household Finances 

(Barceló, 2006; Bover, 2004), and it has also ultimately inspired the development of the 

imputation method that is presented in this paper. The contribution of this paper is to 

investigate the convergence properties of an iterative imputation method that is applied to 

a large socio-economic survey, the German SAVE survey, and to analyze the resulting 

distributions of various imputed financial survey items.3 The latter gives insights about 

item nonresponse behavior of the survey participants and about the bias that would result 

from a complete-case analysis. Furthermore, this paper documents in detail the imputation 

method that has been developed for the German SAVE study. 

The paper is organized as follows: Section 2 gives an overview of the SAVE survey, 

section 3 describes the theoretical underpinnings of the iterative imputation algorithm, 

develops and documents the application of this algorithm to the SAVE survey, and 

describes its relationship to existing work on imputation in large surveys. Section 4 

investigates the convergence properties of the algorithm and compares imputed and 

observed data. Section 5 discusses the presented algorithm and concludes the paper. 

2 The SAVE Survey – An Overview 

In Germany, there has been no dataset available that records detailed data on both 

financial variables such as income, savings, and asset holdings and on sociological and 

psychological characteristics of households. The German Socio-Economic Panel (German 

SOEP) has rich data on household behavior and records indicators of saving and asset 

choices; in 1988 and 2002, the quantitative composition of households' assets was covered 

in much more detail. Another representative survey, Soll und Haben, records detailed data 

on the composition of various financial assets, but it only has qualitative indicators and 

does not quantify asset holdings. Finally, the official budget and expenditure survey 

(Einkommens- und Verbrauchsstichprobe, EVS), conducted every five years by the 

Federal Statistical Office, has very detailed information on the amount and composition of 

income, expenditure, and wealth, but information on other household characteristics is 

very limited, in particular in the most recent waves in 1998 and in 2003. Taking as a basis 

the Dutch CentER Panel and the U.S. Health and Retirement Study (HRS), researchers of 
                                                 
3 A short companion paper (Schunk, 2007), focuses on the theoretical aspects of MCMC imputation and 
summarizes the imputation method that is presented in detail here. 
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the University of Mannheim have cooperated with the Mannheim Center for Surveys, 

Methods and Analyses (ZUMA), NFO Infratest (Munich), Psychonomics (Cologne) and 

Sinus (Heidelberg) to produce a questionnaire on households' saving and asset choice; see 

Börsch-Supan and Essig (2005). The questionnaire has been designed in such a way that 

the interview should not exceed 45 minutes and was first fielded in 2001 using a quota 

sampling design. The first random sample was drawn in 2003.4 The questionnaire consists 

of six parts (see table 3).  
 

Table 3: Structure of the questionnaire of the SAVE Survey. 

Part 1: Introduction, determining which person will be surveyed in the household 

Part 2: Basic socio-economic data of the household 

Part 3: Qualitative questions concerning saving behavior, income and wealth 

Part 4: Quantitative questions concerning income and wealth 

Part 5: Psychological and social determinants of saving behavior 

Part 6: Conclusion: Interview-situation 
 

The first, relatively short part explains the purpose of the study and describes the 

precautions that have been taken with respect to confidentiality and data protection. Part 2 

lasts about 15 minutes and contains questions on the socio-economic structure of the 

household, including age, education and labor-force participation of the respondent and 

his or her spouse. Part 3 of the questionnaire contains qualitative and simple quantitative 

questions on saving behavior and on how households deal with income and assets, 

including hypothetical choice tasks and questions on saving motives; questions are also 

asked on financial decision processes, rules of thumb, and attitudes towards consumption 

and money. Part 4 is the critical part of the questionnaire. It contains a comprehensive 

financial review of the household and therefore the most sensitive questions in financial 

items such as income from various sources and holdings of various assets. Apart from 

financial assets, the questions also cover private and company pensions, ownership of 

property and business assets. Questions are also asked about debt. Part 5 contains 

questions about psychological and social variables. It includes the social environment, 

expectations about income, the economic situation, health, life expectancy and general 

attitudes to life. The interview ends with open-ended questions about the interview 

                                                 
4 A description of SAVE and further details on methodological aspects of the SAVE survey are found in 

Schunk (2006). 
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situation, and a question that asks whether the respondent would be willing to participate 

in a similar survey in the future (part 6).  

3 A Multiple Imputation Method for SAVE 

3.1 Motivation and Theoretical Underpinnings 

To deal with item nonresponse, one can resort to a complete-case analysis, to model-based 

approaches that incorporate the structure of the missing data, or one can use imputation 

procedures.5 A complete-case analysis may produce biased inference, if the dataset with 

only complete observations differs systematically from the target population; weighting of 

the complete cases reduces the bias but generally leads to inappropriate standard errors. 

Additionally, a complete-case analysis leads to less efficient estimates, since the number 

of individuals with complete data is often considerably smaller than the total sample size.6 

Formal modeling that incorporates the structure of the missing data involves basing 

inference on the likelihood or posterior distribution under a structural model for the 

missing-data mechanism and the incomplete survey variables, where parameters are 

estimated by methods such as maximum likelihood. Multiple imputation essentially is a 

way to solve the modeling problem by simulating the distribution of the missing data 

(Rubin, 1996). Ideally, the imputation procedures control for all relevant observed 

differences between nonrespondents and respondents, such that the results obtained from 

the analysis of the complete dataset are less biased overall and estimates are more efficient 

than in an analysis based on complete cases only.  

The goal of imputation is not to create any artificial information but to use the 

existing information in such a way that public users can analyze the resulting complete 

dataset with standard statistical methods for complete data. It is often seen as the 

responsibility of the data provider to provide the imputations: First, because imputation is 

a very resources-consuming process that is not at the disposal of many users. Second, 

because some pieces of information which are very useful for the imputation, such as 

information on interviewer characteristics, are not available to the public. Users are free to 

ignore the imputations, all imputed values are flagged.  

Assumptions 

                                                 
5 An overview of approaches to deal with item nonresponse is presented in Rässler and Riphahn (2006). 
6 Rubin (1987) and Little and Rubin (2002) illustrate and discuss biased inference and efficiency losses 

based on complete-case analyses and weighted complete-case analyses. 
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Many different statistical imputation methods exist and are applied in a variety of data 

contexts. Examples are mean or median imputation, hotdeck imputation and regression-

based imputation. Hotdeck is a very frequently used nonparametric method (e.g., in the 

RAND-HRS). For hotdeck, only very few conditioning variables can be used, even when 

the dataset is very large. Regression-based imputations need parametric assumptions. 

Since regression-based methods allow for conditioning on many more variables than 

hotdeck methods, they are better than hotdeck methods in preserving a rich correlation 

structure of the data, provided that an appropriate parametric assumption is made. 

Ideally, to impute the missing values, a statistical model should be explicitly 

formulated for each incomplete survey variable and for the missing-data mechanism. The 

parameters should then be estimated from the existing data (and from potentially available 

further information, such as information about the interview process) by methods such as 

maximum likelihood. Identifying the probability distributions of the variables under study 

is often very hard and requires weakly motivated assumptions, since the mechanisms of 

nonresponse are often very complex (Manski, 2005). 

Clearly, imputation methods have to make some statistical assumption about the 

nonresponse mechanism and about the distribution of the data values in the survey.7 For 

the imputation method presented in this paper, the underlying assumption about the way in 

which missing data were lost is that missing values are ignorable. To define the 

ignorability assumption, let us first define missing at random (MAR):8  

Suppose that Y is a variable with missing data and X is a vector of always observed 

variables in the dataset. Then, formally: 

Y is MAR ï P(Y is observed | X, Y) = P(Y is observed | X) 

That is, after controlling for information in X, the probability of missingness of Y is 

unrelated to Y.9 MAR implies that the imputation method should condition on all 

variables that are predictive of the missingness of Y, since MAR may no longer be 

                                                 
7 The Bayesian nature of the presented imputation algorithm also requires specification of a prior 

distribution for the parameters of the imputation model. In practice, unless the data are very sparse or the 

sample is very small, a noninformative prior is used (see Schafer (1997) for details). Based on Schafer 

(1997), it can be concluded that the data in the SAVE survey are neither sparse, nor is the sample small. 

Consequently, I do not make any assumption about the prior distribution of parameters. 
8 Note that the MAR assumption cannot be tested from available data (Cameron and Trivedi, 2005). 
9 MAR does not imply that the missing values are a random subsample of the complete dataset. This latter 

condition is much more restrictive and is called ‘missing completely at random’ (MCAR). See Little and 

Rubin (2002) for further discussions. 
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satisfied if variables that determine the nonresponse are not included as conditioning 

variables (Schafer, 1997).  

The missing data mechanism is said to be ignorable, if, (a), the data are MAR and, 

(b), the parameters for the missing data generating process are unrelated to the parameters 

that the researcher wants to estimate from the data.10 Ignorability is the formal assumption 

that allows one to, first, estimate relationships among variables between observed data 

and, then, use these relationships to obtain predictions of the missing values from the 

observed values.  

Of course, for these relationships to yield unbiased predictions, one would need the 

correct model for the observed and missing values. The imputation method presented in 

this paper relies on simple parametric assumptions for all core variables with high rates of 

missingness11 and the method uses nonparametric hotdeck methods for discrete variables 

with only few categories and with very low rates of missingness. The fact that data have 

been multiply imputed increases robustness to departures from the true imputation model 

considerably compared to single imputation approaches that are based on the same 

imputation model. This has been demonstrated in simulation studies (Ezzati-Rice et al., 

1995; Graham and Schafer, 1999; Schafer, 1997). Furthermore, using simulated and real 

datasets from different scientific fields and with varying rates of item nonresponse, 

existing research emphasizes the robustness of multiple imputation to the specifically 

chosen imputation model, given that appropriate conditioning variables are available in 

the dataset (e.g., Schafer, 1997; Bernaards et al., 2003). 

The imputation method used for SAVE aims at capturing all relevant relationships 

between variables in order to preserve the correlation structure between the variables. The 

method therefore conditions on as many relevant and available variables as possible in the 

imputation of each single variable. All possible determinants of the variable to be imputed 

are included as predictors of that variable. Additionally, as has been argued above, 

including all variables that are potential predictors of missingness makes the MAR-

assumption more plausible, because this assumption depends on the availability of 

                                                 
10 In the literature, MAR and “ignorability” are often treated as equivalent under the assumption that 

condition (b) for ignorability is almost always satisfied (Cameron and Trivedi, 2005). 
11 In line with other iterative or non-iterative and regression-based imputation methods for survey data, e.g. 

Bover (2004), Frick and Grabka (2005), and Kennickell (1998), I generally assume a linear model for the 

imputation of continuous variables with high missingness. 
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variables that can explain missingness and that are correlated with the variable to be 

imputed.12  

Multiple Imputation 

Single imputation does not reflect the true distributional relationship between observed 

and missing values and it does not allow the uncertainty about the missing data to be 

reflected in the subsequent analyses. Estimated standard errors are generally too small (see 

also appendix, section 6.2), and even if an appropriate imputation model is chosen, single 

imputation is more prone to generate biased estimates than multiple imputation. These 

defects – documented and discussed in, e.g., Li et al. (1991) and Rubin and Schenker 

(1986) – can seriously affect the subsequent interpretation of the analyses.  

In multiple imputation, M>1 plausible data sets are generated with all missing 

values replaced by imputed values. All M complete datasets are then used separately for 

the analysis and the results of all M analyses are combined such that the uncertainty due to 

imputation is reflected in the results (see appendix, section 6.2). Briefly, multiple 

imputation simulates the distribution of missing data and the resulting overall estimates 

then incorporate the uncertainty about which values to impute. This involves two types of 

uncertainty: Sampling variation assuming the mechanisms of nonresponse are known and 

variation due to uncertainty about the mechanisms of nonresponse (Rubin, 1987).  

Unless the fraction of missing data is extremely large, it is sufficient to obtain a 

relatively small number M of imputed datasets, usually not more than five, which is the 

choice for M in the SAVE imputation method.13 The relative gains in efficiency from 

larger numbers are minor under the rates of missing data that are observed in surveys such 

as the SAVE survey.14  

Markov Chain Monte Carlo Simulation 

Tanner and Wong (1987) present an iterative simulation framework for imputation based 

on an argument that involves the estimation of a set of parameters from conditioning 

information that is potentially unobserved. I review briefly their arguments to motivate the 

iterative imputation method that is used for the SAVE study: 

                                                 
12 Details about the inclusion of conditioning variables in the SAVE imputation method are discussed in 

section 3.2.4. 
13 Both, the Spanish Survey of Household Finances (Barceló, 2006; Bover, 2004) and the U.S. Survey of 

Consumer Finances (Kennickell, 1998) also provide 5 imputations. 
14 Rubin (1987) and Schafer (1997) define efficiency in the context of multiply imputed datasets and discuss 

the choice of M and its impact on efficiency in detail.  
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Let xu be unobserved values of a larger set x and let xo=x\xu. Xu is the sample space 

of the unobserved data, θ  is a set of parameter values to be estimated for which the 

parameter space is denoted by Θ. The desired posterior distribution of the parameter 

values, given the observed data, can be written as: 

∫=
uX

uouuoo dxxxfxxfxf )|(),|()|( θθ  (1) 

Here, ),|( uo xxf θ  is the conditional density of θ given the complete data X, and 

)|( ou xxf  is the predictive density of the unobserved data given the observed data. The 

predictive density of the unobserved data given the observed data can be related to the 

posterior distribution that is shown above as follows: 

∫
Θ

= φφφ dxfxxfxxf oouou )|(),|()|(  (2) 

The basic idea of Tanner and Wong is that the desired posterior is intractable based 

on only the observed data, but it is tractable after the data are augmented by unobserved 

data xu in an iterative framework. The suggested iterative method for the calculation of the 

posterior starts with an initial approximation of the posterior. Then, a new draw of xu is 

made from )|( ou xxf  given the current draw from the posterior )|( oxf θ , and this draw is 

then used for the next draw of )|( oxf θ . Tanner and Wong show that under mild regularity 

conditions, this iterative procedure converges to the desired posterior.  

In an imputation framework, the target distribution is the joint conditional 

distribution of xu and θ, given xo. Based on the ideas of Tanner and Wong, the iterative 

simulation method is summarized as follows: First, replace all missing data by plausible 

starting values. Given certain parametric assumptions, θ  can then be estimated from the 

resulting complete data posterior distribution ),|( uo xxf θ . Let now tθ  be the current value 

of θ. The next iterative sample of xu can then be drawn from the predictive distribution of 

xu given xo and tθ : 

),|(~1 t
ou

t
u xxfx θ+  [Imputation step (I-step)] (3) 

The next step is again to simulate the next iteration of θ  from the complete data posterior 

distribution: 

),|(~ 11 ++ t
uo

t xxf θθ  [Prediction step (P-step)] (4) 

Repeating steps (3) and (4), i.e. sequential sampling from the two distributions, 

generates an iterative Markovian procedure },...,2,1:),{( Ntxt
u

t =θ . For the purpose of 

imputation, this procedure yields a successive simulation of the distribution of missing 
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values, conditioned on both, observed data and distributions of missing data previously 

simulated. The set of conditioning variables in this algorithm is not necessarily the entire 

set of all possible values (Tanner and Wong, 1987). Geman and Geman (1984) apply a 

similar procedure in the field of image processing and show that the stochastic sequence is 

a Markov chain that has the correct stationary distribution under certain regularity 

conditions. Li (1988) presents an additional formal argument that the process moves closer 

to the true latent distribution with each iteration and finally converges. The method is 

called Markov Chain Monte Carlo (MCMC) because it involves simulation and the 

sequence is a Markov Chain. Formally, the method is also related to Gibbs sampling 

(Hastings, 1970), and in the missing data literature, it is often referred to as data augmen-

tation. This method has been used in many statistical applications (e.g., Bover 2004; 

Kennickell, 1998; Schafer 1997). Sequential simulation algorithms of the MCMC-type 

can be modified and implemented in different ways, I briefly come back to this issue in 

section 5. 

3.2  The MIMS-Model 

3.2.1 Variable Definitions 

The multiple imputation method for SAVE (MIMS) distinguishes between core variables 

and non-core variables. The core variables have been chosen such that they cover the 

financial modules of the SAVE survey that involve all questions related to income, 

saving(s), and wealth of the household. The non-core variables include socio-demographic 

and psychometric variables, as well as indicator variables for household economic 

behavior. Except for the participation questions of the core variables (e.g., “Did you or 

your partner own asset X?”) and the question about the value of owner-occupied housing, 

all core variables have missing rates of at least 6%. The non-core variables have 

considerably lower missing rates, in almost all cases much less than 2%. The following 

variables (grouped into three categories) are defined as core-variables: 

• Income variables (E): 40 binary variables indicating income components, 1 

continuous variable for monthly net income, and 1 ordinal variable indicating net 

income in follow-up brackets.  

• Savings variables (S): 1 binary variable indicating whether the household has a 

certain savings goal, 1 continuous variable indicating the amount of this savings 

goal, and 1 continuous variable indicating the amount of total annual saving.  

• Asset variables (A): 48 binary variables indicating asset ownership and credit, 44 

continuous variables indicating the particular amounts.  
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All other variables in the dataset are non-core variables.  

3.2.2 Algorithmic Overview  

MIMS is a multiple imputation procedure that is based on the idea of a Markovian process 

that I have described in the previous subsection. The general algorithmic structure of 

MIMS is similar to the FRITZ imputation method that is used for the multiple imputation 

of the Survey of Consumer Finances and for the Spanish Survey of Household Finances 

(Kennickell, 1998; Bover, 2004). To set the stage for a more detailed discussion of MIMS 

in the next section, this section gives a brief algorithmic overview of MIMS. 

For this purpose, all variables are categorized as follows: 

• All variables that are not core variables are called other variables, O.  

• P is a subset of O, the subset of all variables that is used as conditioning variables 

or predictors for the current imputation step. 

• The union of all variables from P and all core variables that are used as 

conditioning variables for the current imputation step is referred to as the set C (= 

conditioning variables). In the following algorithmic description, C always 

contains the updated information based on the most recent iteration step. It 

contains, in particular, the imputed core variables that have been obtained in the 

last iteration step.  

The complete imputation algorithm for the SAVE data works as follows: 

__________ 

- Impute all variables using logical imputation, whenever possible. 

Outer Loop – REPEAT 5 times, j = 1,..., 5 (= Generate 5 datasets) 

 - Impute variables from O using (sequential) hotdeck imputation, obtain complete  

   data O*. 

 - Impute the income variables E using P*, obtain complete data E*. 

 - Impute the savings variables S using P* and E*, obtain complete data S*. 

 - Impute the asset variables A using P*, E*, and S*, obtain complete data A*. 

 Inner Loop – REPEAT N times (= Iterate N times) 

  - Impute the income variables E using C. 

  - Impute the savings variables S using C.  

  - Impute the asset variables A using C.  

 Inner Loop – END 

Outer Loop – END 

__________ 
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The five repetitions in the outer loop generate one imputed dataset each. After the 

complete algorithm, five complete datasets are obtained, which I henceforth refer to as 

implicates. The algorithm generates an additional flag-dataset which contains binary 

indicators that identify for each value whether it has been imputed or observed.  

3.2.3 Description of MIMS 

As the algorithmic description shows, MIMS follows a fixed path through the dataset. The 

first step of the procedure consists of logical imputation. In many cases, the complex tree 

structure of the SAVE survey or cross-variable relationships allow for the possibility to 

logically impute missing values. The following path through the dataset is guided by the 

knowledge of the missing item rates and by cross-variable relationships. The path starts 

with variables with low missing rates, such that those variables can subsequently be used 

as conditioning variables for variables with higher missing rates. For example, among the 

core variables, the net income variable is imputed first, since its missing rate is generally 

lower than the missing rates of other core variables.15 The algorithmic description shows 

that as soon as the iteration loop starts, all variables are already imputed, i.e. starting 

values for the iteration process have been obtained, and all variables can be used as 

conditioning variables during the iteration. 

Each variable is imputed based on one of the following three general methods:16  

(1) For all categorical or ordinal variables with only few categories and with a low 

missing rate, a hotdeck procedure with several conditioning variables is used.  

(2) For all binary, categorical, or ordinal core variables, binomial or ordered Probit 

models are used.  

(3) For all continuous or quasi-continuous variables, randomized linear regressions with 

normally distributed errors are used. This regression procedure, in particular the handling 

of constraints and restrictions, follows Barceló 2006  and Kennickell (1998). First, the 

conditional expected value is estimated and an error term, drawn from a symmetrically 

censored normal distribution, is added. This normal distribution has mean zero and its 

variance is the residual variance of the estimation. The error term is always restricted to 

the central three standard deviations of the distribution in order to avoid imputing extreme 

                                                 
15 The lower missing rate for the net income variable is – at least partly – due to the survey design. The net 

income question was presented using an open-ended format with follow-up brackets for those who did not 

answer the open-ended question. The imputation of the bracket answers is described later in this paper. 
16 These methods and their application to binary, categorical, ordinal and (quasi-)continuous variables with 

high and low missing rates are illustrated and discussed in more detail in Little and Rubin (2002). 
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values. In few cases, logical or other constraints require that the error term has to be 

further restricted; examples are non-negativity constraints. The imputed value is also 

restricted to lie in the observed range of values for the corresponding variable. That is, in 

particular, imputed values will not be higher than observed values for a certain variable.  

Due to the skip patterns in the questionnaire, the SAVE data have a very complex 

tree structure that imposes a logical structure and that has to be accounted for in the 

imputation process. Further constraints stem from these logical conditions of the data, 

from the ranges provided (e.g., bracket respondents), from cross-relationships with other 

variables, or from any prior knowledge about feasible outcomes. For several variables, the 

specification of all relevant constraints is the most complex part of the imputation 

software. If necessary, the procedure draws from the estimated conditional distribution 

limited to the central three standard deviations, until an outcome is found that satisfies all 

possible constraints that apply in the particular case. 

 

Two remarks are important at this point to gain an understanding of key procedures of the 

algorithm. 

(1) Ownership and amount imputations 

For certain quantities, e.g. the amount of assets held by a household, the SAVE survey 

uses a two-step question mode: In step one, households are asked about ownership of 

assets from a certain asset category and a binary variable records the answer. In step two, 

those households that have reported that they own assets from the particular category are 

asked about the exact value of the corresponding assets. From a modeling point of view, 

this is a corner solution application. Following Bover (2004) and Kennickell (1998), a 

hurdle model is used in MIMS to impute the missing values in these two steps: First, a 

Probit model is estimated for the binary ownership variable, and missing information is 

predicted. Then, as described above, randomized linear regressions with normally 

distributed errors are used for imputing continuous amounts. These regressions are 

estimated based on all observations that own the asset. Alternatively, Tobit models or 

sample-selection models might be appropriate. Tobit models are less attractive for the 

given problem, since they include the implicit assumption that the model governing 

selection and the model governing the estimation of the amounts are the same. Heckman 

selection models are theoretically attractive, but cause estimation problems in practice: 

First, the necessary exclusion restrictions differ substantially across asset categories, but 

there is no theoretical reason why they should differ. Second, in most cases, strong 
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exclusion restrictions are needed to ensure identification and convergence of the Heckman 

procedure in each iteration step of MIMS. This means that in practice only a very small set 

of conditioning variables can be used for the estimation of the second step of the Heckman 

model. Under these circumstances and given that the goal of the multiple imputation 

method is to simulate the distribution of amounts conditional on ownership and 

conditional on a maximally large set of potentially correlated variables, MIMS uses hurdle 

models for ownership and amount imputations. 

(2) Net income variables 

To alleviate the problem of item nonresponse to income questions (see, e.g., Juster and 

Smith, 1997), the survey question on monthly net income was presented using an open-

ended format with follow-up brackets for those who did not answer the open-ended 

question. That is, there are two types of income information available: Exact (in the sense 

of point data) income information for households that answered the open-ended question, 

and interval information on household income for those who only answered the bracket 

question. To make best possible use of all the available income information, the 

imputation procedure uses a maximum-likelihood estimation procedure. The likelihood is 

a mixture of discrete terms (for the interval information) and continuous terms (for the 

point data information). After prediction of the missing income values and the addition of 

the randomized error term, a nearest neighbor approach is used to determine the imputed 

amount for household net income.17 The procedure works as follows: First, an income 

bracket is predicted for all complete nonrespondents to both (i.e., open-ended and bracket) 

income questions. Now, all observations have either exact income information (if they 

have reported this information) or bracket information (either they have reported this 

information, or it has been imputed in the preceding step). Then, each observation i for 

whom an exact net income value has to be imputed and whose net income lies in bracket j 

is matched with the continuous reporter r from bracket j whose predicted net income value 

is closest to the predicted value of respondent i. The net income value assigned to 

observation i is then the reported continuous income value of the respondent r.18 
                                                 
17 Nearest neighbor methods have been motivated in a statistical missing data context by Little et al. (1988) 

and they have subsequently used in the context of bracketed follow-up questions by, e.g., Hoynes et al. 

(1998) in the AHEAD. 
18 In contrast to this procedure, Hoynes et al. (1998) impute the brackets for the full nonrespondents using an 

ordered Probit model that is estimated using only those respondents that have provided bracket answers. The 

chosen procedure in MIMS has the advantage of making better use of the available information (since it uses 

the information from bracket respondents and from contiuous, i.e. open-ended, respondents) and it 
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3.2.4 Selection of Conditioning Variables 

As is clear from the descriptions above, each regression or hotdeck method is tailored 

specifically to the variable to be imputed.19 Of particular importance are the conditioning 

variables which have been selected individually for every single variable with missing 

information according to the following guidelines: 

(A) Hotdeck imputations: Hotdeck imputations, which have been used for discrete 

variables with very low missing rates, allow for only few and discrete conditioning 

variables due to the quickly increasing number of the corresponding conditioning cells. 

The conditioning variables have first been selected based on theoretical relationships if 

available and, second, based on the strength of a correlation with the variable to be 

imputed; those correlations have been systematically explored. As an example for the 

latter, consider the question which asks respondents to rate their expectation concerning 

the future development of their own health situation on a scale from 0 (negative) to 10 

(positive), which has a missing rate of 0.6%. As conditioning variables, the respondents’ 

age (subdivided into five age classes), self-assessed information on the respondents’ 

current health status (rated on a scale from 0 to 10 and subdivided into three classes), and 

self-assessed information on how optimistic the respondent generally is (rated on a scale 

from 0 to 10 and subdivided into three classes) are used.20 All these conditioning variables 

are significantly correlated with the variable to be imputed, both individually, as well as 

jointly in a multiple regression. In some cases, it would be desirable to include core 

variables as additional conditioning variables in the hotdeck imputations. For example, net 

income is clearly expected to be correlated with educational status. Generally, the pattern 

of nonresponse makes this impossible, since the set of nonrespondents to the qualitative 

questions is in almost all cases a subset of the set of nonrespondents to the relevant core 

questions.  

                                                                                                                                                   
circumvents the practical problem in SAVE that the subsample of bracket respondents is too small to be able 

to include much conditioning information into the estimation of an ordered Probit model. Hoynes et al. 

(1998) motivate their procedure by arguing that full nonrespondents are more similar to bracket respondents 

than to continuous reporters. Note, however, that the evidence on the similarity between nonrespondents, 

bracket respondents and continuous respondents is mixed (Kennickell, 1997). 
19 A spreadsheet with information on the specific imputation methods for each imputed variable in SAVE 

(e.g., hotdeck, various regression techniques), as well as information on the used conditioning variables can 

be obtained from the author upon request. 
20 Note that these three conditioning variables already correspond to 5 · 3 · 3 = 45 different cells. 
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(B) Regression-based imputations: In theory, every regression-based imputation should 

use all relevant variables in the dataset, as well as higher powers and interactions of those 

terms as conditioning variables (see section 3.1 and Little and Raghunathan, 1997). The 

imputation procedure should, in particular, attempt to preserve the relationships between 

all variables that might be jointly analyzed in future studies based on the imputed data 

(Schafer, 1997). In practice, a limit to the number of included conditioning variables is 

imposed by the degrees of freedom of the regressions. Additionally, there must not be 

collinearity between conditioning variables, which can easily arise in some cases due to 

the tree structure of the questions. Due to these constraints concerning the inclusion of 

conditioning variables, it is of particular importance to select these variables following 

certain guidelines such that best possible use is made of the available information. For that 

purpose, the variables used in the regression-based imputations of the core variables have 

been classified into three non-disjoint categories: 

(B-1) Determinants of the nonresponse.  

Research in psychology, economics, and survey methodology has investigated the 

relationship between observed respondent and household characteristics and item 

nonresponse behavior in various survey contexts (for an overview, see Groves et al., 

2002). Findings from empirical studies that focus particularly on financial survey items 

suggest that certain variables might be useful predictors of nonresponse to wealth and 

income questions (Hoynes et al., 1998; Riphahn and Serfling, 2005). Following these 

findings, MIMS considers the following variables as determinants of nonresponse to the 

core variables: Age (as well as squared and cubic age), gender, dummy variables for 

educational achievement and employment status, as well as household size. Riphahn and 

Serfling (2005) and Schräpler and Wagner (2001) provide evidence that it is not only the 

individual respondent’s characteristics that may be associated with item nonresponse to 

financial variables, but also the combination of interviewer and respondent characteristics. 

In this spirit, the following variables that capture the relationship between interviewer and 

interviewee characteristics are also considered as determinants of nonresponse to the core 

financial variables in SAVE: Dummies for whether the interviewer is older than the 

interviewee, for her/his educational status relative to the interviewee, for the interviewer’s 

gender, and for the gender combination of interviewer and interviewee. 
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(B-2) Variables that are related to the variable to be imputed based on different economic 

models. 

This category contains essentially all core variables, since financial characteristics of 

households, e.g. saving(s), income and asset categories, are all interrelated. Certain 

qualitative variables on household socio-economic and financial characteristics that are 

not already part of the variables in (B-1) are also included, for example an indicator for 

marital status. Variables that measure individual preferences, such as measures for risk 

attitude, are further included into this category.  

(B-3) Other variables that might be related to the variables to be imputed. 

This category includes variables that are correlated with the variables to be imputed but 

this relationship is not captured in any formal established economic theory that the author 

knows of. An example is the smoking habit of the respondent: While there is no formal 

theory that directly relates smoking habits to economic characteristics of a household, 

there is abundant evidence for a statistically strong association between smoking habits 

and economic characteristics (e.g., Hersch, 2000; Hersch and Viscusi, 1990; Levine et al., 

1997).  

 

The selection of the conditioning variables for the regression is based on the following 

procedure: First, since the goal is to include as many conditioning variables as possible, all 

variables from categories (B-1), (B-2), and (B-3) are included for each imputation 

regression. If necessary – because of multicollinearity or insufficient degrees of freedom – 

variables are removed in the following order: First, variables from (B-3) are removed. 

Then, variables from (B-2) are aggregated if possible: E.g., instead of including 

information on the value of owner-occupied housing and on other real estate as two 

separate conditioning variables, these two variables can be combined to form a variable 

for total real estate wealth. In a few cases, notably variables with very low variability, 

such as the measure of wealth in “other contractually agreed private pension schemes”, 

further conditioning variables from category (B-2) have to be removed. In this case, the 

decision is based on the significance of the variables in the regression. Generally, 

psychometric variables are removed first and credit variables are removed subsequently, 

since those variables have the lowest variability and the highest missing rate among the 

core variables. 
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4 Results 

MIMS has been applied to the 2003/2004 wave of the SAVE survey which contains 3154 

observed households and all statistics presented in this section are based on this wave. 

This section discusses the convergence properties of the algorithm and presents 

descriptive analyses of the imputed and the observed data. The presented analyses serve to 

illustrate the differences between the five implicates, the impact of imputation on the 

distribution of values in the complete dataset, and they are informative concerning the 

differences in the character of nonresponse across various financial survey items.  

4.1  Convergence of MIMS 

Assessing convergence of the sequence of draws to the target distribution is more difficult 

than assessing convergence of, e.g., EM-type algorithms, since there is no single target 

quantity to monitor, like the maximum value of the likelihood. In this subsection, I first 

develop a convergence criterion that is based on a measure for the average change in the 

values of a certain variable vector between two consecutive iteration steps. I then use a 

standard convergence criterion that is also mentioned in Barceló (2006) and which is 

defined with respect to measures of position and dispersion of the distribution of the 

variable to be imputed. Both convergence criteria are used for assessing convergence of 

three core variables of the SAVE survey. 

Let us assume first that there is missing information on only one variable Y in the 

dataset. That is, all conditioning variables are complete data vectors without missing 

values. Let Yi,t be the imputed value of the variable of interest for household i in iteration 

step t, and let I be the total number of imputed observations for variable Y in the dataset. 

Then, the squared change in the value of variable Y between iteration step t and t-1 is: 
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If the procedure has converged, the parameters θ  that characterize the distribution of the 

imputed variable have stabilized.21 That is, after convergence has been achieved, there is 

no systematic component in the change of Y over iterations steps any more; only a non-

                                                 
21 Note: This suggests a further way to assess convergence: One can investigate the degree of serial 

dependence of a certain parameter value over iteration steps by analyzing the autocorrelation function. 

Ideally, this has to be done for all parameters of the particular imputation model, and it is preferred for 

datasets with only few variables and a correspondingly small set of conditioning variables and parameters 

(Schafer, 1997).  
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systematic component remains. tiY ,  and 1, −tiY  can then be assumed to be draws from the 

same distribution. This implies that – as soon as convergence has been achieved – we 

have: 

)(2)()()()(1)( ,1,,1,,
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Indeed, if the procedure has converged, the distribution of the remaining non-systematic 

component is well known, since it is characterized by the distribution of the simulated 

error term that is added to the particular predicted value of in each iteration step. I.e., 

)( ,tiYVar can be calculated as the variance of the simulated error term: This error term, ε , is 

drawn from a normal distribution, the variance of which is – by construction – the residual 

variance of the particular estimation (see section 3.2.3). This normal distribution is then 

double censored to the central three standard deviations. I derive the variance of a double 

censored variable ε in the appendix (see section 6.1).  

From these deliberations follows: If the process has converged, )(ts , calculated 

based on the imputed values of the variable tiY ,  and 1, −tiY , should be equal to 

)(2)( tVarte ε= , i.e. it should be equal to two times the variance of the simulated error term 

in iteration step t. Furthermore, if convergence has been achieved, )(ts  and )(te  are 

stationary, i.e. they should not have any trend over iterations steps and the sample 

autocorrelation function for )(ts  and )(te  should not indicate autocorrelations at any lag. 

 

In real world data-sets, such as in the SAVE data, it is rarely the case that all conditioning 

variables are non-missing, as I have assumed for the derivation above. In particular, this 

condition will not be satisfied in MIMS, since – for reasons given above (see section 

3.2.4) – MIMS conditions on as many core variables as possible which have rather high 

missing rates themselves. But even if the conditioning variables themselves have been 

imputed, the parameters θ  that characterize the distribution of imputed variables should, 

of course, have stabilized if the process has converged. That is, if the process converges, 

)(ts  and )(te  are stationary, i.e. they should not have any trend over iterations steps, and 

the corresponding autocorrelation functions should not indicate any autocorrelations. 

Therefore, displaying )(ts  and )(te  over time provides an intuitive graphical way to 
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investigate convergence of the process.22 Note, however, that the fact that the conditioning 

variables are also imputed has the effect that )(ts  should be in fact larger than )(te  even if 

the process has converged, since the imputed conditioning variables themselves are drawn 

from the corresponding posterior distribution in the particular iteration step. 

 

Figure 1 shows )(ts  and )(te . Five different iteration runs are shown for t = 1,..., 30 and 

one additional run is shown for t = 1,..., 100 in the last row of the figure. The runs are 

displayed for three variables that are used to assess convergence, one from each category 

of the core variables.23 In all simulation runs, )(te  quickly resembles a horizontal line. As 

expected due to the sample size, )(ts  is very volatile. It lies above the value )(te , and after 

few iterations, it does not exhibit any trend over the following iteration steps.24 The results 

indicate quick convergence in the first few iteration steps for net income and for annual 

saving. For the net income variable, )(ts  is lower than )(te 25; this is due to the nearest 

neighbor algorithm and the available bracket information for many nonrespondents which 

reduces variability of a certain imputed value over iteration steps. 

A further investigation of the sample autocorrelation functions of )(ts  and )(te  does not 

reveal any correlations. The corresponding autocorrelation data and figures can be 

obtained from the author upon request. 

 

 

 

                                                 
22 The purpose of these derivations is to suggest a simple graphical convergence diagnostic for an MCMC-

method that is applied to a large dataset and that uses a very large set of conditioning variables. I do not 

claim an equivalence result: While convergence of the algorithm would imply that s(t) and e(t) do not 

exhibit any downward or upward trend, the converse is not true; i.e. stationarity of s(t) and e(t) does not 

imply convergence of the algorithm.  
23 Note that only those values for whom no further constraints apply in all iteration steps (e.g., neither non-

negativity constraints nor maximum-value constraints), are used for the calculation of s(t) and e(t).  
24 If the calculation of s(t) is restricted to those observations for which the conditioning variables are almost 

complete, i.e. non-missing, then the plot reveals that s(t) fluctuates around e(t), as predicted. However, the 

number of observations is even smaller in this case. 
25 Note, that s(t) and e(t) are plotted on a logarithmic scale for the net income variable in order to be able to 

plot both variables in one graph. 
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Figure 1: Convergence diagnostics: s(t) and e(t) displayed for three key variables. 

 

s(t) e(t)s(t) e(t)s(t) e(t)

 
Note: For net income, s(t) and e(t) are divided by 1,000,000, for annual saving and 
savings/term accounts, s(t) and e(t) are divided by 10,000,000. 
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A common criterion for assessing the convergence of a distribution, also suggested in 

Bover (2004), is to compare (functions of) quantiles, e.g., the median and the interquartile 

range, resulting from successive iterations of the variable Y: 
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 (7) 

Here, Q25, Q50, and Q75 denote the 25th, 50th, and 75th quantile, respectively, of the 

particular distribution of imputed values. As long as the process converges, tb  has a 

downward trend. As soon as the process has converged, )(tb  should not exhibit a trend 

any more. Figure 2 shows tb  for the three variables that are used for convergence 

diagnosis. As before, five iteration runs are shown for t = 1,..., 30 and one run is shown 

for t = 1,..., 100. The figures reveal convergence for the net income variable, and some 

indication for convergence of the annual saving variable, which is, however, not really 

convincing. 

Overall, the findings from the two convergence diagnostics presented above suggest 

relatively quick convergence of the algorithm on the net income variable, and mixed 

evidence for the annual saving variable. The convergence properties of the algorithm have 

been investigated on all other core variables. No indication for divergent behavior or long-

term drift has been found, in all cases, )(ts , )(te , and )(tb  are stationary after few 

iteration steps and no autocorrelation is present in )(ts , )(te , and )(tb . However, )(ts  and 

)(tb  do not exhibit a clear downward trend for many variables in the early iteration steps; 

that is, they are stationary from the first iteration step on. The variable savings and term 

accounts which is displayed in the presented figures, is an example of such a variable. 

This result, which is also mentioned by Kennickell (1998), suggests that those variables 

have essentially converged in the first iteration step; i.e. convergence has already been 

achieved in the first prediction step which has served to generate the starting values for the 

iteration. 

Note, that iteration runs with t = 1000, which are not displayed graphically in this paper, 

have also been analyzed for both suggested convergence criteria; as well, the 

corresponding autocorrelation functions have been investigated. The findings show that 

even longer iteration procedures do not achieve better convergence results based on the 

presented diagnostics; in particular, no autocorrelation at longer lags is found. 
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Figure 2: Convergence diagnostics: b(t) displayed for three key variables. 

 
Note: Values b(t) are divided by 100. 
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Overall, the results are in line with findings based on the iterative algorithm implemented 

for the imputation of the Survey of Consumer Finances (Kennickell, 1998). Kennickell 

reports quick convergence on key variables, the algorithm is run for 6 iteration steps 

overall. Given the findings about convergence in this section, MIMS is run for 20 iteration 

steps. 

4.2  Observed, Imputed, and Complete Data 

This subsection has two main purposes: First, the reader should get an impression of the 

differences across the five imputed and across the five complete data implicates. For this 

reason, the following tables report descriptive statistics of key financial variables for all 

five implicates. Second, the section presents and briefly discusses differences between the 

distributions of observed and imputed data. The section ends with a graphical comparison 

between observed and imputed data.  

 

The following table 4 reports descriptive statistics for the observed data, for the five 

imputed implicates, and for the five complete data implicates (complete data implicates 

consist of observed and imputed data, i.e. the full rectangular data matrix). The means of 

all variables vary across complete data implicates and across imputed data implicates. 

Medians of all variables vary only across imputed data implicates, not across complete 

data implicates.26 I first turn to the financial wealth variables. The table shows a consistent 

pattern for all financial wealth variables and for the saving variable: The mean of the 

imputed data is considerably higher than the mean of the observed data. This finding 

deserves further investigation. 

                                                 
26 The fact that summary distributional characteristics, such as mean values, are similar across implicates is 

in line with our finding that the imputation for all 5 implicates – which have all started with different initial 

values for the imputed variables – have indeed converged, and not diverged. Again, longer simulations lead 

to similar results.  
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Table 4: Descriptive statistics for the observed data, for the 5 imputed implicates, and for the 5 complete data implicates. 

 

Observed data

1 2 3 4 5 1 2 3 4 5

Mean 2,554 2,382 2,390 2,400 2,386 2,388 2,501 2,504 2,507 2,502 2,503
Median 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000
Min. 25 25 25 25 25 25 25 25 25 25 25
Max. 120,000 20,000 20,000 23,333 20,000 20,000 120,000 120,000 120,000 120,000 120,000

Mean 2,624 5,453 5,336 5,624 5,553 5,784 2,948 2,940 2,971 2,970 2,994
Median 1,000 3,929 3,738 3,895 3,946 3,772 1,000 1,000 1,000 1,000 1,000
Min. 0 0 0 0 0 0 0 0 0 0 0
Max. 150,000 78,206 56,586 98,161 55,435 112,878 150,000 150,000 150,000 150,000 150,000

Mean 8,174 12,155 12,272 11,755 12,274 12,129 9,068 9,094 8,978 9,094 9,062
Median 500 10,784 11,176 10,360 11,628 10,436 2,000 2,000 2,000 2,000 2,000
Min. 0 0 0 0 0 0 0 0 0 0 0
Max. 1,000,000 88,897 95,767 116,545 81,713 143,290 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000

Mean 1,775 3,917 3,873 3,755 3,726 3,907 2,124 2,117 2,098 2,093 2,122
Median 0 1,844 1,805 1,528 1,671 1,972 0 0 0 0 0
Min. 0 0 0 0 0 0 0 0 0 0 0
Max. 100,000 54,442 64,057 58,061 66,725 68,408 100,000 100,000 100,000 100,000 100,000

Savings/term accounts  [€]

Building society savings agreements  [€]

Implicate No.
Imputed data

Net income [€]

Annual saving [€]

Complete data
Implicate No.

 
Note: All calculations are unweighted. 
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Table 4 (continued) 

 

Observed data

1 2 3 4 5 1 2 3 4 5

Mean 5,042 13,881 14,333 14,393 13,981 13,821 6,813 6,904 6,916 6,833 6,801
Median 0 9,970 10,793 10,380 9,840 9,922 0 0 0 0 0
Min. 0 0 0 0 0 0 0 0 0 0 0
Max. 500,000 196,235 189,196 224,734 198,699 203,240 500,000 500,000 500,000 500,000 500,000

Mean 1,644 10,237 10,459 11,364 11,291 10,915 2,625 2,650 2,754 2,745 2,702
Median 0 0 0 0 0 0 0 0 0 0 0
Min. 0 0 0 0 0 0 0 0 0 0 0
Max. 1,000,000 316,511 349,122 345,260 403,173 380,301 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000

Mean 3,857 8,511 8,350 8,618 8,291 8,460 4,555 4,531 4,571 4,522 4,547
Median 0 526 558 962 925 845 0 0 0 0 0
Min. 0 0 0 0 0 0 0 0 0 0 0
Max. 18,000,000 250,392 264,187 249,577 270,813 277,270 1,800,000 1,800,000 1,800,000 1,800,000 1,800,000

Mean 123,280 44,800 43,388 40,108 38,672 43,639 111,710 111,501 111,018 110,806 111,538
Median 0 0 0 0 0 0 0 0 0 0 0
Min. 0 0 0 0 0 0 0 0 0 0 0
Max. 5,000,000 934,811 1,159,067 1,243,168 876,550 1,248,193 5,000,000 5,000,000 5,000,000 5,000,000 5,000,000

Shares & real-estate funds  [€]

Owner occupied housing  [€]

Whole life insurance policies  [€]

Bonds  [€]

Imputed data Complete data
Implicate No. Implicate No.

 
Note: All calculations are unweighted. 
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For this purpose, table 5 gives information on the imputation of asset variables by 

showing the results of the ownership imputation. The first column of the table shows the 

asset ownership rates for those who answer the ownership question, the following columns 

show imputed ownership rates for all implicates. It is found that except for the item 

savings and term accounts, ownership rates among nonrespondents are in fact lower than 

ownership rates among respondents. Both findings, namely that the imputation overall 

leads to higher means for financial asset variables (table 4) but at the same time generates 

lower ownership rates for financial assets (table 5) is in line with findings by Hoynes et al. 

(1998) who use a non-iterative regression-based single imputation method.27  

 

Table 5: Percentage of households owning assets: Observed values and 5 imputed 
implicates 

 
Observed data

1 2 3 4 5

Savings/term accounts 60.8 70.5 70.5 70.5 70.5 70.5
Building society savings agreements 27.8 15.5 16.7 15.1 14.7 15.9
Whole life insurance policies 30.4 17.1 16.7 16.7 17.5 17.5
Bonds 8.8 2.0 2.4 1.6 2.4 2.0
Shares & real-estate funds 19.8 9.2 9.2 10.0 9.6 9.2
Owner occupied housing 48.6 35.9 37.6 36.8 35.0 36.8

Imputed data
Implicate No.

 
Note: All calculations are unweighted. 

 

It can be concluded that, for most financial asset items, the included conditioning 

variables shift the distribution to higher values for financial wealth on average, compared 

to the original distribution of observed values, which would simply be replicated if no 

conditioning variables were used. The findings by Smith (1995), who reports that the 

                                                 
27 Hoynes et al. (1998) find higher mean values for all complete nonrespondents on all comparable financial 

asset variables. They also find lower imputed ownership rates than observed ownership rates on all financial 

asset variables, except from the item “bonds” and the item “checking and savings accounts”. For these items, 

they find imputed ownership rates that are similar to the observed rates. A more detailed comparison with 

results from other imputation procedures would be of high interest at this point. To the author’s knowledge, 

however, a systematic evaluation of the effect of the imputation on the distribution of different wealth 

components is only presented in the paper by Hoynes et al. (1998). Further methodological insights about 

the impact and relevance of an iterative procedure could be obtained from comparing an application of the 

Hoynes et al. (1998)-procedure and the MIMS-procedure to the same dataset. 
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effect of follow-up brackets to open-ended financial wealth questions in the HRS is a 

substantial increase in mean wealth, go into the same direction. 

In contrast to the findings concerning the financial wealth variables, table 4 shows 

that the mean of imputed values of owner occupied housing are lower than observed 

values. How are home ownership and owner-occupied housing values distributed across 

observed and imputed values? Table 5 has already shown that – according to the 

imputation – the fraction of homeowners, i.e. households with a positive value for owner-

occupied housing28, is considerably lower among nonrespondents than among 

respondents. Table 6 serves to further investigate the difference between the observed and 

the imputed distribution of the value of owner occupied housing. Each column of the table 

gives the percentage distribution of home values for homeowners across four categories. 

The table shows that households that did not answer the corresponding question are more 

likely to occupy real estate with a low value. Interestingly, the results on home-ownership 

and owner-occupied housing values are again in line with findings by Hoynes et al. 

(1998), who report that those with incomplete responses on the housing questions have 

characteristics that make them more likely to be renters, and – given that they are 

homeowners – it makes them more likely to have low values for real estate.29 

 

Table 6: Distribution of owner-occupied housing values for homeowners (percent). 

Observed data

Range (1,000 €) 1 2 3 4 5

0 - 49.9 9.0 12.9 13.7 14.9 14.1 14.9
50 - 99.9 8.3 12.9 16.8 17.0 18.5 8.5
100 - 199.9 29.3 26.9 27.4 31.9 26.1 34.0
> 200 53.4 47.3 42.1 36.2 41.3 42.6

Imputed data
Implicate No.

 
Note: All calculations are unweighted. 
                                                 
28 Of course, one can argue that the fraction of homeowners is not equal to the fraction of households with a 

positive value for owner-occupied housing, since it can also be the case that respondents own real estate and 

answer that its value is zero. In fact, about 5% of the respondents that report owning real estate give a value 

of zero in the follow-up question. In all tables above, these respondents are counted as homeowners. 
29 While the purpose of this paper is not to investigate the relationship between item nonresponse to certain 

questions and socio-economic characteristics, the above findings are interesting in this respect: They suggest 

that nonrespondents to questions about housing might have other socio-economic characteristics than 

nonrespondents to the financial wealth questions. A multivariate analysis indeed finds some evidence for 

this hypothesis. 
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Finally, I turn to the findings for the net income variable. Though medians are 

identical for imputed and observed values, the mean of monthly net income is lower for 

the imputed than for the observed values (table 4). For further investigation, table 7 

compares the distribution of net income values between imputed and observed data. No 

substantial difference in the net income distributions of both groups is observable. The 

reason for the finding that the mean of monthly net income is lower for the imputed than 

for the observed values are a few extreme values in the observed distribution of monthly 

net income: If the observed distribution of monthly net income values is trimmed such that 

the top 0.5-percentile is left out (corresponding to 10 observations that reported having a 

net income between 26,000 € and 120,000 € per month), a mean monthly net income 

value of 2,306 € is found. This value is lower than the mean monthly net income of the 

imputed observations of all five implicates (see table 4); on average by about 83 €.  

 

Table 7: Distribution of monthly net income (percent) 
Observed data

Range (1,000 €) 1 2 3 4 5

0 - 0.9 13.3 14.1 13.9 14.2 13.8 14.0
1 - 1.99 34.4 33.7 33.3 33.1 33.8 33.1
2 - 2.99 28.3 29.4 29.8 29.3 29.5 30.0
3 - 3.99 13.9 11.8 12.3 12.2 12.1 11.9
4 - 4.99 4.8 6.2 5.9 6.4 6.2 6.2
5 - 6.99 2.8 2.4 2.3 2.2 2.1 2.4
> 7 2.5 2.4 2.5 2.6 2.5 2.4

Imputed data
Implicate No.

 
Note: All calculations are unweighted. 

 

Overall, it is found that MIMS does not have a strong effect on the distribution of 

income values in SAVE. In contrast, findings from a regression-based single imputation 

procedure of annual income variables for the SOEP suggest that item nonresponse on 

income appears to be selective with respect to both tails of the income distribution (Frick 

and Grabka, 2005); the overall effect of their imputation is an increase in the mean of 

after-tax income by 1.7%.  

 

To further illustrate the effects of imputation, figure 3 presents kernel density estimates of 

observed and imputed values for the above mentioned financial variables. The kernel 

density is estimated for positive values of the variables that have been analyzed above, an 

Epanechnikov kernel and Silverman’s rule of thumb (Silverman, 1986) for bandwidth 
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selection have been used. Kernel density estimates for the imputed data are usually 

obtained using Rubin’s (1987) method to combine the data from the five implicates before 

the density estimation. According to Rubin (1987)30, the overall imputed value iY  of 

variable Y for a certain observation i is simply the average over the individual five 

imputed values, m = 1,..., 5, that is: 

.
5
1 5

1
,∑

=

=
m

mii YY  (8) 

 

In addition to the discussed findings concerning mean financial wealth differences 

between imputed and observed values, the figures illustrate nicely that the inclusion of 

covariates has a substantial effect on the distribution of asset holdings, a conclusion that is 

also emphasized by Hoynes et al. (1998). For the variables annual saving and owner 

occupied housing, the effect of focal point answers on the density is clearly visible: For 

example, the leftmost spike in the distribution of annual saving is due to the large amount 

of households reporting a total amount of annual saving of exactly 1,000 €. The second 

“spike” (or better: “plateau”) stems from all households reporting 5,000 €. This 

multimodality is not replicated by the distribution of the imputed data, and it is debatable 

whether it should be replicated. One way of replicating multimodality would be to 

additionally use a nearest neighbor procedure after the regression-based imputation. For 

reasons given above, MIMS uses a nearest neighbor procedure only for variables that have 

follow-up brackets.  

                                                 
30 Rubin (1987) derives general methods for combining the information from multiply imputed datasets. A 

brief summary of these methods, given in the appendix of this paper, section 6.2, informs the reader about 

how to work with the multiply imputed SAVE data. 
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Figure 3: Density functions of observed and imputed values. 

 

Observed ImputedObserved ImputedObserved Imputed

 
Note: All calculations are unweighted. 
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5 Discussion and Conclusion 

Except for controlled experimental settings, survey studies about human past and intended 

behavior rarely generate complete information. For several reasons that have been 

discussed in this paper, it is however desirable to provide users with a complete dataset in 

which all missing values have been imputed.  

Missing values are rarely known with certainty. To be able to reflect the uncertainty 

of missing data in subsequent analyses, multiple imputation is used for the SAVE survey. 

This goal of this paper is to present the key theoretical underpinnings of a Markov Chain 

Monte Carlo multiple imputation algorithm, to describe and document the practical 

application of such a multiple imputation algorithm to the SAVE data, and to present and 

discuss properties of the algorithm as well as the resulting imputed datasets.  

The Markov Chain Monte Carlo technique that is used for the algorithm presented in 

this paper is similar to the method presented in Schafer (1997) who uses smaller datasets 

with few conditioning variables, and it is similar to the method presented in Barceló, 

(2006) and in Kennickell (1998), who apply an iterative method to data from two large 

scale socio-economic surveys. It is important to note that modifications of this 

implementation are conceivable and should be explored: For example, the sequential 

simulation algorithm can be modified such that each draw from a certain conditional 

distribution depends not only on the conditional distribution estimated in the preceding 

iteration step, but also on conditional distributions estimated in earlier iteration steps 

(Cameron and Trivedi, 2005). Alternatively, in each iteration step the distribution of 

unobserved values can be simulated a certain number of times p, and the parameter values 

for the next iteration step can then be estimated from all p simulated distributions; this 

means that multiple versions of the unobserved data are generated from the predictive 

distribution in one iteration step. A comparison of convergence properties between these 

different ways of implementing the data augmentation algorithm would certainly be 

helpful. Considering the fact that the method proposed in this paper is based on the 

assumption of ignorable missing data, future research efforts should also be directed 

towards modeling the missing data mechanism explicitly and eventually a model should 

be formulated for each incomplete survey variable and for the corresponding mechanism 

of missingness. Particularly given the complexity of the nonresponse patterns in SAVE, 

this constitutes a substantial effort. A comparison with the results obtained from MIMS 

would be of highest scientific interest. 
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So far, convergence properties of MCMC methods have only been systematically 

analyzed on simulated datasets and datasets with fewer variables compared to the large 

household survey that is analyzed in this paper (see, e.g., Schafer, 1997). The findings of 

the present study suggest that the algorithm converges in only few iteration steps. For 

most variables, the process is stationary after not more than about 5-10 iterations steps. 

For all other variables, it is stationary from the first iteration step on, suggesting that the 

algorithm has already converged in the first iteration step – a phenomenon that is also 

reported by Kennickell (1998). It is certainly worth investigating the convergence 

properties of MCMC algorithms in the context of large surveys or large simulated datasets 

in a collaborative effort and with standardized methods. This will further contribute to a 

more comprehensive evaluation of the relevance of MCMC methods for survey research. 

Finally, a comparison between imputed and observed values has revealed that the 

use of covariates in the imputation process has a substantial effect on the distributions of 

individual asset holdings. In general, these effects are similar to the effects reported based 

on other techniques. This finding suggests that item nonresponse is not occurring 

randomly but is related to the included covariates. The analyses also suggest that there 

might be differences in the character of nonresponse across asset types, and they indicate 

specific directions for future research on the relationship between socio-economic 

characteristics and nonresponse to specific items. Furthermore, from the point of view of 

survey methodology and data quality management which is of ultimate interest for every 

researcher and policy maker, the findings underline the need for an ongoing scientific 

discussion about imputation. In particular, this discussion will have to do with the effects 

of different imputation strategies on the distribution of data obtained in large-scale socio-

economic surveys as well as with a systematic exploration of the feasibility of different 

imputation methods.  
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6 Appendix 

6.1 Derivation of the Variance of a Normally Distributed Random Variable that is 

Symmetrically Censored 

 

Consider a normally distributed random variable *y with mean zero and standard deviation 

σ : 

),0(~* σNy              (A1) 

Alternatively, with )(⋅ϕ  being the density function of the standard normal distribution, we 

can write:          

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
σϕ

σ

*
* 1~ yy              (A2) 

 

We now define a new random variable y , which is obtained from the original one, *y , by 

symmetrically censoring the variable y : 
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This variable has the following density function:  
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(A4) 

Here, )(⋅Φ  is the cumulative distribution function of )(⋅ϕ . 

This distribution is a mixture of discrete and continuous parts. It is the variance of the 

random variable y  that we want to calculate as a function of the censoring value a. 

In order to do so, I use the variance decomposition formula: 
( ) [ ]( ) [ ]( )ayEVarayVarEyVar || +=          (A5) 

I compute the first term on the right-hand side, then the second term on the right-hand 

side, and then combine the two results. 
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(a) Computation of [ ]( )ayVarE | : 

The expected value of the conditional variance of y, given the censoring value a, can be 

decomposed as follows: 

[ ]( ) ( ) [ ] ( )[ ] [ ]ayyVaraayyVaraayVarE <⋅−Φ−+=⋅−Φ= |21|2| σσ      (A6) 

It is obvious that [ ] 0| == ayyVar . 

That is, [ ]ayyVar <|  remains to be computed, and it is known that 

[ ] [ ]ayyVarayyVar <=< ** || . 

[ ]ayyVar <** |  can be decomposed as follows: 
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[ ]ayyVar >∗∗ |  is the variance of a truncated normally distributed variable. This variance is 

computed as follows (see Johnson and Kotz, 1970): 

[ ] ( ),)(1| 2** aayyVar δσ −=>           (A8) 

where 

( )σλλδ aaa −= )()( , and 
( )
( )σ
σϕ

λ
a

a
a

Φ−
=

1
)( . 

It follows: 
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And therefore: 

[ ]( ) ( )[ ] ( )1)(221| 2 −⋅−Φ−= aaayVarE δσσ         (A10) 
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(b) Computation of [ ]( )ayEVar | : 

We find: 

[ ]( ) ( ) [ ]{ } ( )[ ] [ ] ( ){ }

( ) ,2

|212|

2

22

aa

yEayyEayEaaayEVar

⋅−Φ=

−<⋅−Φ−+−⋅−Φ=

σ

σσ
    (A11) 

since [ ] ayE = , [ ] 0| =< ayyE , and ( ) 0=yE  by symmetry arguments. 

 

Combining the results of (a) and (b) finally yields the expression for the variance of a 

symmetrically censored normally distributed variable, with mean zero, standard deviation 

σ  and censoring value a: 

( ) ( ) ( )[ ] ( )1)(2212 22 −⋅−Φ−+⋅−Φ= aaaayVar δσσσ       (A12) 

 

6.2 Rules for Inference Based on Multiply Imputed Datasets 

The 5 implicates of the SAVE data can be analyzed using standard complete data 

methods. Every model has to be estimated 5 times, once for each complete and imputed 

dataset. The results across these estimations vary, this reflects the missing-data 

uncertainty. Rubin (1987) has derived a method for combining the results from a data 

analysis performed M times, once for each of M imputed data sets, to obtain a single set of 

results: Suppose that mQ̂  is the scalar point estimate of interest, obtained from data set m. 

Suppose further that mÛ  is the variance estimate associated with mQ̂ .The overall estimate 

is then the average of the individual estimates,  
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For the overall standard error, one must first calculate the within-imputation variance,  
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and the between-imputation variance,  
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The total estimated variance of the multiple-imputation point estimate is then 

.)11( B
M

UT ++=             (A16) 

Single imputation underestimates the standard errors of the estimates because it has zero 

between imputation variance. 
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Additional methods for combining the results from multiply imputed data that hold under 

certain special assumptions about the data are presented in Schafer (1997). 
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