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Abstract

On average, “young”people underestimate whereas “old”people overestimate

their chances to survive into the future. We construct a Choquet Bayesian learn-

ing model of ambiguous survival beliefs which replicates these patterns. These

ambiguous survival beliefs are then embedded within a Choquet expected util-

ity model of life-cycle consumption and saving. Our analysis shows that agents

with ambiguous survival beliefs (i) save less than originally planned, (ii) exhibit

undersaving at younger ages, and (iii) hold larger amounts of assets in old age

than their rational expectations counterparts who correctly assess their survival

probabilities. Our ambiguity-driven model therefore simultaneously accounts for

three important empirical findings on household saving behavior.
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1 Introduction

Expectations about future survival are important for numerous economic decisions.

Forming such expectations is a very diffi cult task. In fact, substantial biases of sub-

jective survival beliefs relative to objective data have been documented in the literature.

This paper provides a theory for the emergence of such biases and investigates their

implications for life-cycle saving behavior.

Our work builds on two empirical regularities. First, according to the Health and

Retirement Study (HRS), on average, “younger” people strongly underestimate their

(relatively high) probability to survive to some target age. At the same time, “older”

people strongly overestimate their lower survival probability. Figure 1 shows aggregated

data from the HRS by plotting average age-specific biases in survival beliefs– the differ-

ence between the respective average subjective belief and the average objective data– for

three waves of the HRS between 2000 and 2004. We observe that younger respondents

between ages 50 and 70 persistently underestimate their survival chances by about 10

to 20 percentage points on average. Older respondents around the age of 85 persistently

overestimate their survival chances by 15-20 percentage points. Also notice that the

overestimation is getting more pronounced with increasing age.1

Second, recent empirical findings on household saving behavior proved to be puzzling

for the standard “workhorse”-life-cycle model à la Modigliani and Brumberg (1954) and

Ando and Modigliani (1963). For example, Laibson et al. (1998) and Bernheim and

Rangel (2007) report large gaps between self-reported behavior and self-reported plans.

People save less for retirement than actually planned (Choi et al. 2006; Barsky et al.

1997; Lusardi and Mitchell 2011). They behave in a dynamically inconsistent manner.

Another well-known puzzle is that people hold large amounts of assets still late in life

and dissave less in old age than predicted by the standard model (see, e.g., De Nardi et

al. 2010; Hurd and Rohwedder 2010; Lockwood 2013).

This paper asks in how far a decision theoretic explanation may simultaneously

account for both empirical regularities, i.e., the observed biases in survival perceptions,

on the one hand, and the empirical findings on saving behavior, on the other hand.2

1Similar patterns have been documented in numerous other datasets, cf., e.g., Hammermesh (1985),

Elder (2013), Peracchi and Perotti (2010), and Wu et al. (2013). Also see Ludwig and Zimper (2013)

for a detailed discussion of the data.
2Obviously, the biases of subjective survival perceptions from objective life-table data shown in

Figure 1 should influence a household’s consumption and saving decisions. For example, Salm (2010)

estimates that a 1 percent increase in the subjective probability of mortality reduces annual future

consumption of non-durable goods by around 1.8 percent. Bloom et al. (2006) find that an increased

subjective survival probability leads to higher wealth accumulation thereby confirming results of Hurd

et al. (1998).
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Figure 1: Difference of Subjective Survival Probabilities and Cohort Data
(a) Women (b) Men
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Notes: Deviations in percentage points of subjective survival probabilities from objective data. Ob-

jective survival rates are based on cohort life table data. Future objective data is predicted with the

Lee-Carter procedure (Lee and Carter 1992). Each bar depicts the difference of unconditional proba-

bilities to survive to a specific target age.

Source: Own calculations based on HRS, Human Mortality Database and Social Security Administra-

tion data.

More specifically, we consider a representative agent who expresses ambiguity in the

sense that she does not resolve her uncertainty through a unique additive probability

measure. Our approach comprises of two buildings blocks. As our first building block,

we derive ambiguous survival beliefs as estimates from a model of Choquet Bayesian

learning, extending earlier work in Ludwig and Zimper (2013).3 As our second building

block, we combine Choquet expected utility maximization with respect to the ambiguous

survival beliefs derived from our calibrated learning model with a canonical life-cycle

model. We next discuss both building blocks in turn.

Our construction of ambiguous survival beliefs provides an explanation for the biases

of Figure 1 through a model of Bayesian learning. Accordingly, the decision maker is

uncertain about her future survival chances (described as parameter values) whereby

she observes with increasing age more and more data generated by the true parameter

3For axiomatic foundations of Choquet expected utility (CEU) theory see Schmeidler (1989) and

Gilboa (1987). Because we restrict attention to gains, CEU theory in our model is equivalent to the

celebrated cumulative prospect theory (CPT) (Tversky and Kahneman 1992; Wakker and Tversky 1993).

Furthermore, note that our specific decision theoretic approach could be equivalently formalized as an

“α-maxmin expected utility with multiple priors”model of Ghirardato et al. (2004, Proposition 19).
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value. Clearly, the persistent biases of Figure 1 are inconsistent with classical models

of Bayesian learning whose estimates converge to objective probabilities when people

observe more data. In a first step, we therefore develop a model of Choquet Bayesian

learning such that the decision maker expresses her ambiguity about the joint distribu-

tion of the parameter and sample space through (i) a neo-additive capacity in the sense

of Chateauneuf et al. (2007) which (ii) she updates in accordance with the Generalized

Bayesian update rule (Pires 2002; Eichberger et al. 2007). Under simplifying assump-

tions, we derive a closed-form expression for the Choquet estimates of survival chances

that only depends on the decision maker’s age. In a next step, we demonstrate that

these age-dependent Choquet estimates can themselves be reinterpreted as neo-additive

capacities defined on the space of the decision maker’s survival events.

Although the ambiguous survival beliefs of our model are thus formally described as

neo-additive capacities, it is important to notice that this neo-additive structure is not

imposed ad hoc but is a formal implication of our Choquet Bayesian learning model.

The formal relationship between the parameters of the conditional neo-additive capac-

ities of the Choquet learning model and the parameters of the resulting age-dependent

neo-additive survival beliefs has a number of interesting implications. For example, even

if our Choquet Bayesian learning model reduces to classical Bayesian learning with addi-

tive probabilities (i.e., no ambiguity in the learning model), the decision maker’s survival

beliefs only become non-ambiguous in the limit of the learning process where they re-

semble objective survival probabilities. In general, however, our Choquet estimates do

not converge to objective survival probabilities to the effect that the calibrated version

of our learning model will be able to generate ambiguous survival beliefs which replicate

the biases of Figure 1.

Having characterized survival beliefs as age-dependent neo-additive capacities, we

describe in our second building block the representative agent’s life-cycle utility over

consumption streams as her Choquet expected utility (CEU) with respect to the neo-

additive survival beliefs derived from our calibrated learning model. Our analysis then

investigates whether biases in survival beliefs can partially resolve saving puzzles. To

this purpose we compare consumption and saving behavior of CEU agents with the spe-

cial case of rational expectations (RE) agents who are described by the limit (i.e., by an

infinite amount of statistical information) of our learning model in the absence of am-

biguity. Whenever CEU agents do not converge to RE agents, life-cycle maximization

gives rise to dynamically inconsistent behavior. We study both ‘naive’and ‘sophisti-

cated’CEU agents. While the former do not anticipate that their future selves deviate

from ex ante optimal consumption plans, the latter are fully aware of their dynamically

inconsistent behavior.
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A qualitative analysis for a simplified three-period model, presented in a Supplemen-

tary Appendix4, shows that naive as well as sophisticated CEU agents exhibit undersav-

ing relative to their RE counterparts if they suffi ciently underestimate objective survival

probabilities at young ages. Furthermore, for the model to give rise to the phenomenon

that households save less in the intermediate model period than originally planned, the

survival beliefs of dynamically inconsistent naive CEU agents have to feature only mod-

erate overestimation in this intermediate period (otherwise they would save more). At

the same time, because of their relative optimism in the intermediate model period naive

CEU agents save more out of cash on hand than the corresponding RE agent. However,

whether asset holdings in the final period are higher for the CEU agent depends on

the interplay between underestimation at young ages and overestimation at older ages.

Whether these conditions hold and how relevant the biases in beliefs are for generating

saving puzzles are quantitative questions.

To address these questions we calibrate the stochastic quantitative life-cycle model

to the data. With the exception of the discount rate, we determine all parameters

outside the model. We pin down the discount rate to minimize the distance of life-cycle

asset holdings between the model and the data. With this strategy we do not directly

target any of the aforementioned theoretical conditions required for the CEU model to

(partially) resolve saving puzzles.

We indeed find that the calibrated RE model gives rise to these puzzles: The average

saving rate for prime age savers of age 25−54 is at 13.5%, compared to 9.5% in the data.

Average asset holdings at ages 75, 85 and 95 relative to asset holdings at the average

retirement age of 62 are 70.0%, 37.0% and 9.1%, compared to 72.4%, 53.0% and 47.9% in

the data. Hence, through the lens of the RE model, the data are puzzling: relative to the

model the young save too little and the old decumulate assets too fast in the data. The

calibrated naive CEU agents model partially resolves these puzzles. The average saving

rate is at 9.4% and relative asset holdings at ages 75, 85 and 95 are at 77.7%, 56.8%

and 34.8%. These statistics are remarkably close to the data. In addition, the realized

saving rate is 5.5 percentage points lower than the planned saving rate. Predictions

on asset holdings for the sophisticated agent CEU model are similar. They save a bit

more than naive CEU agents and hence feature slightly higher asset holdings in old

age. Overall, the fit to the data is better for naive than for sophisticated agents. Our

analysis therefore suggests that our notion of ambiguous survival beliefs combined with

naivety provides an accurate quantitative picture of saving behavior until about age 85.

Importantly, we also document that this success of the naive agents’CEU model does

4The Supplementary Appendix is available online at http://www.wiwi.uni-

frankfurt.de/fileadmin/user_upload/dateien_abteilungen/abt_ewf/LS_Ludwig/SubjBeliefs_SuppApp.pdf.
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not hinge on recalibrating the discount rate. Results are virtually unchanged when we

hold it constant at the value calibrated for the RE model.

The intuition for these quantitative findings is as follows: The calibrated model

gives rise to suffi cient underestimation at young age so that naive CEU agents save less

than their RE counterparts. At the same time, naive CEU households only moderately

overestimate their future survival chances so that they end up saving less in each period

than originally planned in the past. As agents get older, overestimation of future survival

beliefs eventually dominates so that the speed of asset decumulation is lower to the effect

that the level of old age asset holdings is eventually higher than for RE agents. Finally,

sophisticated agents correctly anticipate the more optimistic beliefs of their future selves.

For reasons of consumption smoothing they therefore save more which leads them to have

higher old-age asset holdings than their naive counterparts.

The standard model to explain dynamic inconsistency and undersaving is the hyper-

bolic time-discounting model. Building on the early work by Strotz (1955) and Pollak

(1968), Laibson et al. (1998) find that exponential consumers save more than hyperbolic

consumers, cf. also Angeletos et al. (2001). This standard model cannot account for

high old-age asset holdings because long-run discounting is as in the rational expecta-

tions model. In contrast, over-estimating beliefs for low probabilities in our CEU model

implies lower long-run effective discount rates which leads to higher old-age asset hold-

ings. In this respect our work relates to Halevy (2008) as well as Epper et al. (2011)

who argue that hyperbolic time discounting is actually generated by ambiguous survival

beliefs. Motivated by this insight, we show in our companion paper (Groneck et al.

2014) that quasi-hyperbolic time-discounting over the life-cycle is formally equivalent

to a static CEU life-cycle model in which agents hold globally under-estimating neo-

additive survival beliefs that are not subject to Bayesian learning. The CEU model of

the present paper is thus formally different from any quasi-hyperbolic time-discounting

model. First, it considers neo-additive survival beliefs that can express both, under-

estimation of large as well as overestimation of low probabilities (cf., the inverse S-shaped

probability weighting function of CPT). Second, these neo-additive survival beliefs are

not superimposed ad hoc but are derived from a model of Bayesian learning over the

life-cycle.

Similarly, standard explanations for insuffi cient old-age asset decumulation such as

a bequest motive (Hurd 1989; Lockwood 2013) and precautionary savings behavior

(Palumbo 1999; De Nardi et al. 2010) cannot generate undersaving at young ages. Our

model of ambiguous survival beliefs therefore adds to existing explanations for saving

behavior by simultaneously generating all three stylized findings: (i) time inconsistency,

(ii) undersaving at young and (iii) high asset holdings at old age.
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The remainder of our paper is organized as follows. Section 2 constructs our model of

Choquet Bayesian learning over the agent’s life-cycle. In Section 3 we use the resulting

age-dependent Choquet estimators to construct neo-additive probability spaces that

characterize, for all ages, the representative agent’s ambiguous survival beliefs. Section

4 combines our notion of ambiguous survival beliefs with a multi-period stochastic life-

cycle model. Calibration is outlined in Section 5 and results of the quantitative analysis

are presented in Section 6. Finally, Section 7 concludes. All propositions are formally

proved in Appendix A. Appendix B describes the construction of the asset data used

for calibration.

2 Bayesian Learning of Survival Beliefs

Standard life-cycle models with rational expectations use objective survival probabilities,

denoted ψk,t with k < t, to model the representative agent’s beliefs to survive from age

k to age t. These beliefs are independent of the agent’s age because there is no learning

of survival beliefs over the life-cycle: the rational expectations agent always already

knows her true survival chances. Figure 1 demonstrates that real life people do not

know their true survival chances. In the absence of such knowledge, it is plausible that

some learning of survival beliefs happens over the representative agent’s life-cycle.

Instead of a rational expectations agent let us therefore consider a Bayesian decision

maker who updates her estimator of her chance to survive from k to t by observing

statistical information as she grows older. More specifically, for a fixed k and t we assume

that the agent observes over her ages h ∈ {0, ..., k} a non-decreasing data sample whose
age-dependent sample size e (h) is given by some non-decreasing experience function

e : {0, ..., k} → N.

This sample contains information about how many out of e (h) individuals have survived

from k to t whereby these individuals have the same independently and identically

distributed survival chances as the representative agent. The interpretation is that this

age-increasing statistical information serves as a proxy for the real-life situation that

people increasingly receive news about the deaths (or critical illnesses) of acquainted

people or read increasingly many health studies/articles.

We start out with the formal description of a classical Bayesian learner whose uncer-

tainty is captured by a unique additive probability measure. Because the estimators of

this classical Bayesian learning model converge towards objective survival probabilities,

we argue that this learning model cannot plausibly explain the HRS data on subjective

survival beliefs (cf. also Ludwig and Zimper (2013)).
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In a next step, we construct a model of Choquet Bayesian learning which nests the

classical model of Bayesian learning as a special case. Whenever the agent’s uncertainty

about the joint parameter and sample space cannot be described by some additive prob-

ability measure, the resulting Choquet estimators will not converge to objective survival

probabilities. As a consequence, the appropriately calibrated age-dependent Choquet es-

timators will be able to capture the persistent biases between subjective survival beliefs

and objective survival probabilities depicted in Figure 1.

2.1 Classical Bayesian Learning

Let us consider a classical Bayesian decision maker who satisfies Savage’s (1954) axioms

such that her uncertainty about the joint parameter and sample space is comprehensively

described by some unique subjective additive probability measure, denoted µ. The

parameter space Θ is given as the Euclidean open interval (0, 1) with Σ (Θ) denoting the

Borel-sigma algebra on Θ. The n-dimensional sample space is given as Xn = ×ni=1Xi

with Xi = {0, 1}, for all i, where 1 (resp. 0) captures the event that individual i does

(resp. not) survive from k to t. Endow each Xi with the discrete topology and denote

by Σ (Xn) the product sigma-algebra of all Borel sigma algebras Σ (Xi), i = 1, ..., n.

Define the infinite sample space X∞ = ×∞i=1Xi with the infinite product sigma-algebra

Σ (X∞) and denote by Σ (Θ×X∞) the product sigma-algebra of Σ (Θ) and Σ (X∞).

To model the classical Bayesian decision maker we are thus concerned with the additive

probability space (Θ×X∞,Σ (Θ×X∞) , µ).

Consider the Σ (Θ)-measurable random variable θ̃ : Θ×X∞ → (0, 1) such that

θ̃ (θ, x∞) = θ.

where we interpret the value of θ̃ as the true survival probability in any given state of the

world. Next consider the Σ
(
Xe(h)

)
-measurable random variable Ĩe(h) which counts the

number of individuals i ∈ {1, ..., e (h)} who survived from k to t, i.e., Ĩe(h) : Θ×X∞ →
{0, ..., e (h)} such that

Ĩe(h) (θ, x∞) =

e(h)∑
i=1

xi.

We further assume that, conditional on the true parameter value θ̃ = θ, each of the

e (h) individuals have the same probability θ as the representative agent to survive from

k to t where survival is independent across individuals. By this i.i.d. assumption of

individual survivals, Ĩe(h) is, conditional on the true survival probability θ̃ = θ, binomially

distributed with probabilities

µ
(
Ĩe(h) = j | θ

)
=

(
e (h)

j

)
θj (1− θ)e(h)−j for j ∈ {0, ..., e (h)} . (1)

8



In the absence of any sample information the (marginal) distribution

µ
(
θ̃
)
≡ µ

(
θ̃ ×X∞

)
stands for the agent’s prior about her survival chances so that the agent’s estimator for

her chances to survive from k to t is defined as the (unconditional) expectation

E
[
θ̃, µ

(
θ̃
)]

=

∫
θ∈(0,1)

θdµ
(
θ̃
)
. (2)

In light of random sample information Ĩe(h), however, the agent updates her prior to

the posterior distribution µ
(
θ̃ | Ĩe(h)

)
so that her estimator becomes the (conditional)

expectation

E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
=

∫
θ∈(0,1)

θdµ
(
θ̃ | Ĩe(h)

)
. (3)

We interpret the (random) Bayesian estimator (3) as the belief of an h-old agent to

survive from age k to age h. Note that consistency results for classical Bayesian estima-

tors establish that the posterior distributions µ
(
θ̃ | Ĩe(h)

)
concentrate almost surely at

the true parameter value (i.e., the objective survival probability ψk,t) if e (h) gets large,

implying5

lim
e(h)→∞

E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
= ψk,t almost surely.

That is, if the classical Bayesian agent receives more and more statistical information

when her age h approaches k, she will learn with certainty her true (=objective) proba-

bility to survive from k to t.

While this limit result holds for general well-specified priors µ
(
θ̃
)
, we are foremostly

interested in an analytically convenient closed-form expression that specifies (3) for any

given Ĩe(h). To this purpose we restrict attention to priors µ
(
θ̃
)
given as some Beta

distribution with parameters α, β > 0, implying E
[
θ̃, µ

(
θ̃
)]

= α
α+β

. That is, we assume

that

µ
(
θ̃ = θ

)
= Kα,βθ

α−1 (1− θ)β−1

5Convergence to the true parameter value only occurs if the prior is, as in our case, well-specified, i.e.,

has this true value in its support; (the seminal contribution is Doob 1949). For a more general conver-

gence result—including misspecified priors—in terms of minimization of the Kullback-Leibler divergence,

see Berk (1966).
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where Kα,β = Γ(α+β)
Γ(α)Γ(β)

is a normalizing constant.6 Given the Binomial distribution (1),

we obtain by Bayes’rule the following conditional distribution of θ̃

µ
(
θ̃ = θ | Ĩe(h) = j

)
=

µ
(
Ĩe(h) = j | θ

)
µ (θ)∫

(0,1)
µ
(
Ĩe(h) = j | θ

)
µ (θ) dθ

= Kα+j−1
α+j,β+e(h)−kθ

α+j−1 (1− θ)β+e(h)−j−1 for θ ∈ (0, 1) .

Note that µ
(
θ̃ | Ĩe(h) = j

)
is itself a Beta distribution with parameters α+j, β+e (h)−j.

The agent’s subjective survival belief (3) conditional on information Ĩe(h) = j, j ∈
{0, ..., e (h)}, is thus given as

E
[
θ̃, µ

(
θ̃ | Ĩe(h) = j

)]
=

α + j

α + β + e (h)
(4)

=

(
α + β

α + β + e (h)

)
E
[
θ̃, µ

(
θ̃
)]

+

(
e (h)

α + β + e (h)

)
j

e (h)
.

That is, the updated estimator E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
is a weighted average of the agent’s

prior estimator E
[
θ̃, µ

(
θ̃
)]
and the observed fraction j

e(h)
of individuals who survived

from k to t. From (4) the convergence behavior of classical Bayesian estimators to

objective probabilities is easy to see: If the experience function e (h) goes to infinity,

the law of large numbers implies that the fraction j
e(h)

of individuals who have survived

from k to t converges almost surely to the objective survival probability ψk,t whereby

this fraction receives more and more weight because e(h)
α+β+e(h)

converges to one.

To sum up: Classical Bayesian learning models imply convergence of all subjective

survival beliefs to objective survival probabilities as the agent gains more experience

when growing older. However, the age-specific pattern of the biases in Figure 1 sug-

gests that such converging learning behavior might, in reality, not happen over the life

cycle: instead of convergence to objective survival probabilities, strong underestima-

tion of objective survival probabilities is persistent for low target ages whereas strong

overestimation is persistent for high target ages as the representative agent grows older.

2.2 Choquet Bayesian Learning

As in the classical Bayesian set-up we consider the measurable space (Θ×X∞,Σ (Θ×X∞))

where Θ × X∞ denotes the joint parameter and sample space. As a generalization of

the Savage decision maker, however, we now consider a Choquet decision maker who

6The gamma function is defined as Γ (y) =
∞∫
0

xy−1e−xdx for y > 0.
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satisfies the axioms of Choquet expected utility theory (e.g., Schmeidler 1989; Gilboa

1987) so that her uncertainty is resolved by a unique capacity (=not necessarily additive

probability measure) κ rather than by the additive probability measure µ. Formally, κ :

Σ (Θ×X∞)→ [0, 1] satisfies

(i) κ (∅) = 0, κ (Θ×X∞) = 1

(ii) A ⊂ B ⇒ κ (A) ≤ κ (B) for all A,B ∈ Σ (Θ×X∞).

In Choquet decision theory random variables are integrated via the Choquet integral.

Formally, the Choquet integral of a bounded Σ (Θ×X∞)-measurable function f : Θ×
X∞ → R with respect to the capacity κ is defined as the following Riemann integral (cf.
Schmeidler 1986)7:∫ Choquet

fdκ ≡
∫ 0

−∞
(κ ({(θ, x∞) ∈ Θ×X∞ | f (θ, x∞) ≥ z})− 1) dz (5)

+

∫ +∞

0

κ ({(θ, x∞) ∈ Θ×X∞ | f (θ, x∞) ≥ z}) dz.

In analogy to the classical Bayesian approach, we define by

κ
(
θ̃
)
≡ κ

(
θ̃ ×X∞

)
the agent’s (non-additive) prior about her survival chances and we define the Choquet

estimator for her chances to survive from k to t as the (unconditional) Choquet expec-

tation

E
[
θ̃, κ

(
θ̃
)]

=

∫ Choquet

θ∈(0,1)

θdκ
(
θ̃
)
. (6)

We also define the Choquet estimator in light of sample information Ĩe(h) as the (condi-

tional) Choquet expectation

E
[
θ̃, κ

(
θ̃ | Ĩe(h)

)]
=

∫ Choquet

θ∈(0,1)

θdκ
(
θ̃ | Ĩe(h)

)
(7)

where κ
(
θ̃ | Ĩe(h)

)
denotes some updated non-additive posterior in light of the sample

information Ĩe(h).

7For an f taking on m different values such that A1, ..., Am is the unique partition of Θ×X∞ with

f ((θ, x∞)1) > ... > f ((θ, x∞)m) for (θ, x∞)i ∈ Ai, the Choquet integral (5) becomes

E [f, κ] =

m∑
i=1

f ((θ, x∞)i) · [κ (A1 ∪ ... ∪Ai)− κ (A1 ∪ ... ∪Ai−1)] ,

which is the familiar method of integrating up some utility function f in Rank Dependent Utility Theory

or in CPT applied to gains.
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At this point, however, we run into two diffi culties. First, for Choquet decision makers

there exists a multitude of alternative update rules for non-additive probability measures

so that there exists, unlike for additive probability measures, no unique definition of a

conditional capacity κ (· | ·). Second, even if we have settled for a specific update rule,
it is diffi cult to work with the Choquet estimator (7), if we do not impose further

restrictions on the class of admissible capacities. To address both diffi culties, we restrict

attention to the class of neo-additive capacities (Chateauneuf et al. 2007) which are

updated in accordance with theGeneralized Bayesian update rule (Pires 2002; Eichberger

et al. 2007).

Neo-additive Capacities

Neo-additive capacities are an analytically very tractable class of non-additive probabil-

ity measures which are used in the literature8 to approximate inverse S-shaped proba-

bility weighting functions as typically elicited for CPT (cf., e.g., Tversky and Kahneman

1992; Wu and Gonzalez 1996; 1999).

Recall that the set of null events, denoted N , collects all events that the decision
maker deems impossible.

Definition 1. Fix some set of null-events N ⊂ Σ (Θ×X∞) for the measurable space

(Θ×X∞,Σ (Θ×X∞)). The neo-additive capacity, ν, is defined, for some δ, λ ∈
[0, 1] by

ν (A) = δ · νλ (A) + (1− δ) · µ (A) (8)

for all A ∈ Σ (Θ×X∞) where µ is some additive probability measure satisfying

µ (A) =

{
0 if A ∈ N
1 if Θ×X∞\A ∈ N

and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iffΘ×X∞\A ∈ N .

In this paper, we are exclusively concerned with the empty set as the only null event,

i.e., N = {∅}. In this case, the neo-additive capacity ν in (8) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A)

8See, e.g., Wakker (2010), Abdellaoui et al. (2011), and Ludwig and Zimper (2013).
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for all A 6= ∅,Θ×X∞. The parameter δ ∈ [0, 1] is interpreted as a degree of ambiguity.

If there is no ambiguity (δ = 0), ν reduces to the additive probability measure µ. If there

is ambiguity (δ > 0), the parameter λ ∈ [0, 1] measures in how far the agent resolves this

ambiguity about an event A through over- (high values of λ) versus under-estimation

(low values of λ) with respect to the additive probability µ (A).

The following observation extends a result (Lemma 3.1) of Chateauneuf et al. (2007)

for finite random variables to the more general case of random variables with a bounded

range (cf. Zimper (2012) for a formal proof).

Observation 1. Let f : Θ × X∞ → R be a Σ (Θ×X∞)-measurable function with

bounded range. The Choquet expected value (5) of f with respect to a neo-additive

capacity (8) is then given by

E [f, ν] = δ (λ sup f + (1− λ) inf f) + (1− δ)E [f, µ] .

Substituting the neo-additive prior ν
(
θ̃
)
for κ

(
θ̃
)
in (6) gives, by Observation 1,

the following Choquet estimator in the absence of any sample information

E
[
θ̃, ν

(
θ̃
)]

= δ (λ sup θ + (1− λ) inf θ) + (1− δ) · E
[
θ̃, µ

(
θ̃
)]

= δ · λ+ (1− δ) · E
[
θ̃, µ

(
θ̃
)]
.

Obviously, if there is no ambiguity, i.e., δ = 0, this Choquet estimator reduces to the

classical Bayesian estimator (2) with respect to the additive prior µ
(
θ̃
)
.

Generalized Bayesian Updating

CEU theory has been developed in order to accommodate paradoxes of the Ellsberg

(1961) type which show that real-life decision-makers violate Savage’s (1954) sure thing

principle. Abandoning the sure thing principle implies that there exist several perceiv-

able Bayesian update rules for non-additive probability measures (cf., e.g., Gilboa and

Schmeidler 1993; Epstein and Le Breton 1993; Ghirardato 2002; Siniscalchi 2011).

In the present paper we assume that the representative agent forms conditional capac-

ities in accordance with the Generalized Bayesian (=GB) update rule. The GB update

rule has an axiomatic foundation within Choquet decision theory in the form of the plau-

sible behavioral axioms of Consequentialism andConditional Certainty Equivalence Con-

sistency.9 Moreover, the GB update rule is analytically very tractable whereby it avoids

9For formal definitions and discussions of these axioms, see, e.g., Pires (2002), Eichberger et al.

(2007), and Siniscalchi (2011).
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the extreme updating behavior of alternative update rules with axiomatic foundations

such as, e.g., the optimistic or the pessimistic update rule (cf. Gilboa and Schmeidler

1993). According to the GB rule we formally define, for all non-null A,B ∈ Σ (Θ×X∞),

κ (A | B) ≡ κ (A ∩B)

κ (A ∩B) + 1− κ (A ∪ ¬B)
. (9)

An application of this update rule to a neo-additive capacity ν gives rise to the following

observation.

Observation 2. If the Generalized Bayesian update rule (9) is applied to the neo-
additive capacity (8), we obtain, for all non-null A,B ∈ Σ (Θ×X∞),

ν (A | B) = δB · λ+ (1− δB) · µ (A | B) (10)

such that

δB =
δ

δ + (1− δ) · µ (B)
.

Henceforth, we formalize our Choquet Bayesian learning model within the neo-

additive probability space

(Θ×X∞,Σ (Θ×X∞) , ν (· | ·)) (11)

such that ν (· | ·) satisfies (10). By combining Observations 1 and 2, the Choquet esti-
mator (7) in light of sample information Ĩe(h) becomes

E
[
θ̃, ν

(
θ̃ | Ĩe(h)

)]
= δĨe(h) · λ+

(
1− δĨe(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
(12)

where

δĨe(h) =
δ

δ + (1− δ) · µ
(
Ĩe(h)

) (13)

and δĨe(h) = 0 if, and only if, there is no initial ambiguity, i.e., δ = 0.

Imposing Ad hoc Assumptions

By its very nature, the Choquet estimator (12) is random because it reacts to random

sample information. Our aim is, however, to derive survival beliefs from Choquet esti-

mators in a parsimonious manner. We therefore impose the following two assumptions

to further simply the Choquet estimator (12) to the effect that it becomes constant for

a given age h.

Assumptions. Fix h, k, t such that h ≤ k < t.
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A1 The additive measure µ in (10) gives rise to a uniform distribution µ
(
θ̃
)
.

A2 The observed fraction of surviving individuals coincides with the objective survival
probability. That is, for every given e (h),

j = arg min
k∈{0,...,e(h)}

∣∣∣∣ k

e (h)
− ψk,t

∣∣∣∣ , hence we set j

e (h)
≈ψk,t.

Assumption A1 pins down the closed form of the additive estimator E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
since the uniform distribution is the Beta-distribution with parameters α = β = 1. This

assumption implies that– prior to any sample information– the survival chances for all

k, t are identically regarded as “fifty-fifty” chances. Although A1 might appear– at a

first glance– as a rather strong assumption, we use it in the calibration of the model only

to initialize the dynamics at biological birth (biological age of 0). That is, when agents

become economically active in our model, i.e., at the biological age of 20, they have

already gathered some experience according to experience function e(h) which pushes

the posterior beliefs away from the fifty-fifty assessment, cf. Section 5 for further details.

A1 also implies that the parameter δĨe(h) (13) will be constant across all possible sample

information at a given age h because for a uniform µ
(
θ̃
)
the unconditional probability

µ
(
Ĩe(h)

)
will be identical for every possibly observed sample information Ĩe(h) if h is

fixed.

Assumption A2 is a technical assumption which plays the role of the law of large num-

bers without actually requiring that e (h) is already large for every age h. In particular,

A2 implies that the originally random classical estimator E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
embedded

in (14) becomes deterministic. As one justification of A2 observe that our representative

h-old agent can be considered as the average of many h-old agents who have observed

their own data samples so that even with small values of the experience function e (h)

the average value of the fraction j
e(h)

coincides almost surely with the objective proba-

bility ψk,t. Also note that A2 becomes, by the law of large numbers, rather innocuous

for suffi ciently large values of the experience function e (h).

Proposition 1. Under the Assumptions A1-A2, the h-old agent’s Choquet estimator
for the chance to survive from k to t becomes

E
[
θ̃, ν

(
θ̃ | Ĩe(h)

)]
= δe(h) · λ+

(
1− δe(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
(14)

such that

E
[
θ̃, µ

(
θ̃ | Ĩe(h)

)]
=

(
2

2 + e (h)

)
· 1

2
+

(
e (h)

2 + e (h)

)
· ψk,t (15)
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and

δe(h) =
δ + e (h) δ

1 + e (h) δ
. (16)

Note that Proposition 1 (proved in Appendix A) pins down a closed form expression

of the Choquet estimator (14) which is no longer random but completely determined by

the parameters δ, λ, and e (h) of our Choquet Bayesian learning model as well as by the

objective survival probability ψk,t.
10

3 Ambiguous Survival Beliefs

So far we have been concerned with the neo-additive probability space (11) of our Cho-

quet Bayesian learning model which captures the agent’s uncertainty about the joint

parameter and sample space for fixed k and t with k < t. By imposing several assump-

tions on this learning model, we have derived the closed form expression (14) for the

h-old agent’s Choquet estimator to survive from k to t. In this section, we show that

these Choquet estimators give rise to a unique neo-additive capacity which describes the

h-old agent’s ambiguous beliefs to survive from a fixed age k to any given age t.

3.1 The Neo-additive Probability Space of Survival Events

To construct a measurable space of survival events, define the finite state space Ω =

{0, 1, ..., T} and denote by F the powerset of Ω. We interpret Dt = {t} , t ∈ Ω as the

event in F that the agent dies at the end of period t where T stands for the maximal
possible age. Define Zt = Dt ∪ ... ∪ DT as the event in F that the agent survives (at

least) until the beginning of period t.

Suppose that there exists an additive probability measure ψ on (Ω,F), which we

interpret as the “objective” survival probability measure. Next define the conditional

additive probability measure ψ (· | Zk) on (Ω,F) which gives the objective probability

of an agent’s survival chances given that she has already survived from age 0 to age k.

Recall that we already denoted by ψk,t the objective probability that a k-old individual

survives from k to t, implying

ψk,t = ψ (Zt | Zk) .
10Proposition 1 gives similar long-run dynamics as the learning model developed in Ludwig and

Zimper (2013). There, however, we used an ad hoc assumption on the additive prior beliefs. In

contrast, Proposition 1 derives the entire dynamics in a more rigorous and entirely consistent way.
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Now observe that the Choquet estimator (14) for the chance to survive from k to t

can be equivalently rewritten as

E
[
θ̃, ν

(
θ̃ | Ĩe(h)

)]
= δhλh + (1− δh)ψk,t (17)

where11

δh =
2 + 3e (h) δ + e (h)2 δ

2 + 2e (h) δ + e (h) + e (h)2 δ
, (18)

λh =
1− δ + 2λδ + 3λe (h) δ + λe (h)2 δ

2 + 3e (h) δ + e (h)2 δ
. (19)

Because ψ (· | Zk) is an additive probability measure on (Ω,F), the Choquet estimators

(17) for different t’s can thus be interpreted as the values νhk (Zt) of a neo-additive

capacity νhk defined on
(
Ω,Fh

)
. This observation gives rise to the central definition

of our paper, which translates our notion of Choquet Bayesian estimators of survival

chances into a neo-additive probability space for survival events.

Definition 2. Fix some age h = 1, ..., T and some k ≥ h. Define the neo-additive

probability space
(
Ω,F , νhk

)
such that, for all A ∈ F ,

νhk (A) =


0 if ψ (A | Zk) = 0

δhλh + (1− δh)ψ (A | Zk) else

1 if ψ (A | Zk) = 1

(20)

with ambiguity parameter δh and parameter λh given by (18) and (19), respectively.

For all h ≤ k < t ≤ T , we call

νhk,t ≡ νhk (Zt) = δhλh + (1− δh)ψk,t (21)

the h-old agent’s ambiguous belief to survive from k to t.

3.2 Discussion

As our point of departure, we have modeled Choquet Bayesian learning within the neo-

additive probability space

(Θ×X∞,Σ (Θ×X∞) , ν (· | ·)) (22)

such that the conditional neo-additive capacity ν (· | ·) is characterized by the initial
parameters δ and λ combined with an application of the Generalized Bayesian update

11It can be shown that 0 ≤ δh ≤ 1 as well as λ ≤ λh ≤ 1
2 if λ ≤

1
2 and

1
2 ≤ λh ≤ λ if λ ≥

1
2 .
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rule. In a next step, we have constructed the survival event spaces
(
Ω,F , νhk

)
such that

the neo-additive capacity νhk, characterized by the parameters δh and λh, is defined as

the h-old agent’s Choquet estimator of the underlying learning model. Consequently, the

parameter values δh and λh are comprehensively pinned down through equations (18)

and (19) by the values of the parameters δ, λ and the agent’s age-dependent experience

e (h).

To see how the age-conditional ambiguous survival beliefs νhk depend on the specifi-

cation of the underlying Choquet Bayesian learning model let us consider three different

scenarios. First, suppose that there is no initial ambiguity about the joint distribution

of the parameter- and sample space, i.e., δ = 0. Even for this classical Bayesian learning

model with an additive probability measure µ, the agent’s survival beliefs νhk will not be

additive except for the limiting case in which she receives an infinite amount of statistical

information.

Observation 3. Fix the neo-additive joint parameter and sample space (11) for some
k such that δ = 0.

(i) For all values of the experience function e (h), νhk does not reduce to an additive

probability measure because we have a strictly positive ambiguity parameter

δh =
2

2 + e (h)
> 0.

(ii) As the values of the experience function e (h) get large, the ambiguous survival

beliefs νhk,t converge to the objective probabilities ψk,t.

Hence, the RE model is nested as a special case for δ = 0 and e(h)→∞.
As a second scenario, suppose now that there is initial ambiguity in the Choquet

Bayesian learning model but that there is no age-dependent learning. In this “static”

scenario, the agent’s ambiguous survival beliefs thus remain constant over all ages so

that, for all h, e (h) = n for some n ∈ N . Note that the age-independent neo-additive
capacity can be interpreted as the transformation of the objective survival probability

by a neo-additive probability weighting function. Bleichrodt and Eeckhoudt (2006)

as well as Halevy (2008) already consider non-additive survival beliefs where some age-

independent probability weighting function is applied to an additive survival probability.

Since this static scenario is nested within our general notion (21) as a special case, it is

straightforward to investigate the sensitivity of our results with regard to this feature of

the model.

We have already argued in Section 2.2, that the convergence behavior of classical

Bayesian learning towards rational expectations is at odds with the data. Similar, we do
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not believe in the plausibility of the static model because it would be in stark contrast

to our everyday experience according to which people receive more and more informa-

tion about survival chances. The third and, in our opinion, most plausible scenario is

therefore a combination of initial ambiguity with Choquet Bayesian learning over the

life-cycle such that the agent’s experience function e(h) strictly increases in her age h. In

this scenario, the age-dependent ambiguous survival beliefs (10) do not converge through

Bayesian learning to the objective survival probabilities.

Observation 4. Fix the neo-additive joint parameter and sample space (11) for some
k such that δ > 0. As the values of the experience function e (h) get large, the

ambiguous beliefs νhk,t converge to the value of the λ parameter of the Choquet

Bayesian learning model, i.e.,

lim
e(h)→∞

δhλh + (1− δh)ψk,t = λ.

Because ambiguous survival beliefs do not converge to objective probabilities when-

ever there is ambiguity in the Choquet Bayesian learning model, our notion of ambiguous

survival beliefs will be able to replicate the age-dependent bias patterns of Figure 1.

Remark. The ambiguity parameter δh, given by (18), first decreases in the sample
sizes e (h) whereas it increases for all e (h) such that

e (h) ≥
√

1

2δ
.

That is, for any δ > 0, the agent’s ambiguity with respect to her survival chances will

eventually increase in the amount of statistical information that she receives where

lim
e(h)→∞

δh = 1.

This feature might seem to be counter-intuitive because one possible interpretation of

ambiguity is the lack of suffi cient statistical information to form a unique additive belief.

Although an in-depth discussion of the ongoing (and fascinating) research on Bayesian

learning under ambiguity is beyond the scope of this paper, we briefly discuss the plau-

sibility of this feature in the Supplementary Appendix.

4 Quantitative Life-Cycle Model

This section merges our notion of ambiguous survival beliefs with a life-cycle model.

One model period corresponds to one age year. We model a realistic life-cycle income
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profile including stochastic and age-specific labor productivity. In addition, a PAYG

pension system is modeled with a fixed date of retirement. We assume no annuity

markets and a self-imposed borrowing constraint (because there is always a small positive

probability of drawing zero income). These elements are included only in order to

generate realistic endogenous life-cycle consumption profiles. (Self-imposed) borrowing

constraints, stochastic labor income in combination with impatience give a hump-shaped

consumption profile, as in the data. Positive pension income implies that savings for

retirement are not too large.

4.1 Demographics

We consider a large number of ex-ante identical agents (=households). Households be-

come economically active at age (or period) 0 and live at most until age T . The number

of households of age t is denoted by Nt. Population is stationary and we normalize

total population to unity, i.e.,
∑T

t=0Nt = 1. Households work full time during peri-

ods 1, . . . , tr− 1 and are retired thereafter. The working population is
∑tr−1

t=0 Nt and the

retired population is
∑T

t=tr
Nt.

We refer to age h ≤ t as the planning age of the household, i.e., the age when house-

holds make their consumption and saving plans for the future. At ages h = 1, . . . , T ,

households face objective risk to survive to some future period t. We denote corre-

sponding objective survival probabilities for all in-between periods k, h ≤ k < t, by ψk,t
where ψk,t ∈ (0, 1) for all t ≤ T and ψk,t = 0 for t = T+1. We think of survival risk as an

idiosyncratic risk that washes out at the aggregate level. Total population is therefore

constant and dynamics of the population are correspondingly given by Nt+1 = ψt,t+1Nt,

for N0 given.

4.2 Endowments

There are discrete shocks to labor productivity in every period t = 0, 1, ..., , tr−1 denoted

by ηt ∈ E, E finite, which are i.i.d. across households of the same age. The reason

for modeling stochastic labor productivity is to impose discipline on calibration. For

sake of comparability, our fully rational model features standard elements as used in

numerous structural empirical studies on life-cycle models, cf., e.g., Laibson et al. (1998),

Gourinchas and Parker (2002) and references therein. By ηt = (η1, . . . , ηt) we denote

a history of shocks and ηt | ηh with h ≤ t is the history (η1, . . . , ηh, ..., ηt). Let E be

the powerset of the finite set E. Etr−1 are σ-algebras generated by E,E, .... We assume

that there is an objective probability space
(
×tr−1
t=0 E

tr−1, π
)
such that πt(ηt | ηh) denotes

the probability of ηt conditional on ηh.
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We follow Carroll (1992), Gourinchas and Parker (2002) and others and assume

that one element in E is zero (zero income). Accordingly, πt(ηt | ηh) reflects a (small)
probability to receive zero income in period t. This feature gives rise to a self-imposed

borrowing constraint and thereby to continuously differentiable policy functions. (Self-

imposed) borrowing constraints are required to generate realistic paths of life-time con-

sumption, saving and asset accumulation. Continuous differentiability is convenient

when we model a sophisticated agent. By thereby avoiding technicalities as addressed

in Harris and Laibson (2001) we keep our analysis focused. Since the zero income prob-

ability is small, results are virtually unaffected by this assumption, relative to a model

with a fixed zero borrowing limit which would result in a kink in each policy function.

In fact, we obtain almost identical numerical results for such a model.

In addition, we assume productivity to vary by age. Accordingly, φt denotes age-

specific productivity which is estimated from the data and results in a hump-shaped

life-cycle earnings profile.

After retirement at age tr households receive a lump-sum pension income, b. Retire-

ment income is modeled in order to achieve a realistic calibration. Without retirement

income accumulated assets would be too high (ceteris paribus) which would be offset in

the calibration by a higher discount rate. Pension contributions are levied at contribution

rate τ . To achieve a self-imposed borrowing constraint and continuous policy functions

also during the retirement period, we assume that there is a small i.i.d. probability of

default of the government on its pension obligations. Accordingly, ηt ∈ Er = [1, 0]

during retirement. Correspondingly, let Er be the powerset of the finite set Er. ErT−tr+1

are σ-algebras generated by Er,Er, ... and
(
×Tt=trEr, πr

)
is the objective probability space

in the retirement period.

Collecting elements, income of a household of age t is given by

yt =

{
ηtφtw (1− τ) for t < tr

ηtb for t ≥ tr.

We abstract from private annuity markets.12 The interest rate, r, is assumed to be

fixed. With cash-on-hand given as xt ≡ at (1 + r) + yt the budget constraint writes as

xt+1 = (xt − ct) (1 + r) + yt+1. (23)

Finally, define total income as ytott ≡ yt+rat, and gross savings as assets tomorrow, at+1.

12Hence, we do not address the annuity puzzle in this paper, i.e., the observed small size of private

annuity markets, see Friedman and Warshawsky (1990) for an overview. On the one hand, underesti-

mation of survival beliefs extenuates the annuity puzzle. On the other hand, overestimation at old age

reinforces the puzzle. However, overestimation of survival rates only sets in after the age of 70 and the

average underestimation in our total sample is around 27 percentage points.
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4.3 Government

We assume a pure PAYG public social security system. Denote by χ the net pension

benefit level, i.e., the ratio of pensions to net wages. The government budget is assumed

to be balanced each period and is given by

τw
tr−1∑
t=0

φtNt = b
T∑
t=tr

Nt = χ (1− τ)w
T∑
t=tr

Nt. (24)

In addition, accidental bequests– arising because of missing annuity markets– are

taxed away at a confiscatory rate of 100%. Also, in the unlikely event of default of the

government on its pension obligations, the government collects the contributions to the

pension system. Both these revenues are used for government consumption which is

otherwise neutral.

4.4 CEU Preferences

Households face two dimensions of uncertainty, respectively risk, about period t con-

sumption. First, due to our assumption of productivity shocks, agents face a risky labor

income. Second, agents are uncertain with respect to their life expectancy. While we

model income risk in the standard objective EU way, we model uncertainty about life-

expectancy in terms of a CEU agent who holds ambiguous survival beliefs as stated in

Definition 2.

Given the productivity shock history ηh, denote by c ≡ (ch, ch+1, ch+2...) a shock-

contingent consumption plan such that the functions ct, for t = h, h + 1, ..., assign

to every history of shocks ηt|ηh some non-negative amount of period t consumption.
Denote by u (ct) the agent’s strictly increasing utility from consumption at age t, i.e.,

u′ (ct) > 0. We normalize u (0) = 0. We assume that the agent is strictly risk-averse,

i.e., u′′ (ct) < 0. Expected utility of an h-old agent from consumption in period t > h

contingent on the observed history of productivity shocks ηh is then given as Eh [u (ct)] ≡
E
[
u (ct) , π

(
ηt|ηh

)]
=
∑
ηt|ηh

u (ct) π
(
ηt|ηh

)
.

We assume additive time-separability and add a raw time discount factor β = 1
1+ρ
.13

Fix some s ∈ {h, h+ 1, ..., T} with the interpretation that the agent survives until pe-
riod s and dies afterwards. Zero consumption in periods of death implies that u (ct) = 0

for all t > s. Given s, the agent’s von Neumann Morgenstern utility from a consumption

plan c is then defined as

13In line with Halevy (2008) and Andreoni and Sprenger (2012), we assume that time-preferences

cannot be reduced to preferences under uncertainty. To keep the formalism as transparent as possible,

we simply consider standard exponential time-discounting.
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U (c (s)) = u(ch) +
s∑

t=h+1

βt−hEh [u (ct)] . (25)

We model the h-old agent as a Choquet decision maker whose survival uncertainty

is expressed through the ambiguous survival beliefs of Definition 2. Thereby, we restrict

attention to the neo-additive probability space
(
Ω,F , νhh

)
which expresses the beliefs

of an h-old agent to survive from her current age h to any age t > h. This agent’s

Choquet expected utility from consumption plan c with respect to νhh is given as (cf.

Observation 1)

E
[
U (c) , νhh

]
= δh

[
λh sup

s∈{h,h+1,...}
U (c (s)) + (1− λh) inf

s∈{h,h+1,...}
U (c (s))

]
(26)

+ (1− δh) ·
T∑
s=h

[U (c (s)) , ψ (Ds | Zh)]

where ψ (Ds | Zh) denotes the objective probability that the h-old agent dies at the end
of period s. Note that we have as best, resp. worst case, scenario for any c that

sup
s∈{h,h+1,...}

U (c (s)) = u(ch) +
T∑

t=h+1

βt−hEh [u (ct)] ,

inf
s∈{h,h+1,...}

U (c (s)) = u(ch), (27)

i.e., the least upper bound consists of the discounted sum of utilities if survival prob-

abilities were equal to one in every period. The greatest lower bound is the utility if

the agent does not survive to the next period. The following technically convenient

characterization of (26) is derived in the appendix.

Proposition 2. Consider an agent of age h. The agent’s Choquet expected utility from
consumption plan c is given by

E
[
U (c) , νh

]
= u(ch) +

T∑
t=h+1

νhh,t · βt−h · Eh [u (ct)] (28)

where the subjective belief to survive from age h to t ≥ h is given by

νhh,t =

{
δh · λh + (1− δh) · ψh,t for t > h

1 for t = h
(29)

with δh and λh given by (18) and (19), respectively.
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Because the parameter λh determines how much decision weight is (additionally)

put on the best versus worst possible utility scenario in the CEU life cycle model

(26), we henceforth call λh a “relative optimism” parameter. This motivational in-

terpretation of λh is somewhat different from our cognitive interpretation of λ as an

“over/underestimation”parameter in the Choquet Bayesian learning model.

4.5 Recursive Problem and Dynamic Inconsistency

At each age h, the agent constructs a consumption and saving plan that maximizes

her lifetime utility. The age-dependent sequence of neo-additive probability spaces(
Ω,F , νhh

)
, h = 1, ..., T , violates dynamic consistency of the agent’s life-cycle utility

maximization problem whenever the ambiguous survival beliefs do not reduce to the

limiting case of rational expectations, i.e., for all h, νhh = ψ (· | Zh).14 To character-

ize actual behavior in presence of dynamic inconsistency, we analyze both naive and

sophisticated agents, cf. Strotz (1955) or inter alia O’Donoghue and Rabin (1999) for

procrastination models.

A naive agent is completely unaware of this dynamic inconsistency in that she ignores

that her future selves will have strict incentives to deviate from a plan that maximizes

her lifetime utility from the perspective of age h. We model naifs so that, for each

age h, self h implements the first action of her optimal plan expecting future selves to

implement the remaining plan. In contrast, sophisticates fully understand the dynamic

inconsistency whereby they incorporate the correctly anticipated utility maximization

problems of their future selves as constraints into their own maximization problem.

The resulting strategic situation– in which each agent effectively plays a game against

her future selves– is solved through backward induction: Conditional on any observed

consumption- and saving history, the optimal consumption and saving plan of self T is

incorporated into self T − 1’s optimal plan, which are both incorporated into self T − 2

’s optimal plan and so forth to the initial self 0.

Although there exists some empirical evidence suggesting that naive rather than

sophisticated decision making might be more relevant (cf. O’Donoghue and Rabin (1999)

and the literature cited therein), there also exists evidence according to which several

investment and contractual arrangements (e.g., investment in rather illiquid assets such

as real estate financed by long-term loans) serve as commitment devices through which

sophisticated agents restrain the consumption behavior of their future selves (cf., e.g.,

14We refer the interested reader to the axiomatic treatment of the relationship between violations of

dynamic consistency and violations of Savage’s (1954) sure-thing principle (as in CEU theory) to Epstein

and Le Breton (1993), Ghirardato (2002), Siniscalchi (2011) and the Appendix in Zimper (2012).
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Ludwig and Zimper (2006) and references therein). In the present paper, we take the

pragmatic stand to consider both types of behavior.

We further assume that income risk is first-order Markov so that π(ηt | ηt−1) =

π(ηt | ηt−1). It is then straightforward to set up the recursive formulation of lifetime

utility (28). The value function of age t ≥ h viewed from planning age h is given by

V h
t (xt, ηt) = max

ct,xt+1

{
u (ct) + β

νhh,t+1

νhh,t
Et
[
V h
t+1

(
xt+1, ηt+1

)]}
.

Maximization of the above is subject to (23).

Naive Agents

The naive CEU agent’s first order condition is given by the standard Euler equations.

Proposition 3. The Euler equation for the naive CEU agent for all t ≥ h is given by

du

dct
= β (1 + r) ·

νhh,t+1

νhh,t
· Et

[
du

dct+1

]
, (30)

where
νhh,t+1

νhh,t
=

νhh,h+1 = δhψh,h+1 + (1− δh)λh for t = h
δhψh,t+1+(1−δh)λh
δhψh,t+(1−δh)λh

for t > h.

By (30), the expected growth of marginal utility from h to h+1 is higher than under

rational expectations if the household underestimates the probability of survival to the

next period, i.e., if νhh,h+1 < ψh,h+1, and vice versa for overestimation. From (30) we

can also directly verify that the CEU life-cycle maximization problem is dynamically

inconsistent if and only if the ambiguous survival beliefs do not reduce to additive

probabilities. To see this formally compare the optimal consumption choice of an h+ 1

old agent, first, from the perspective of an h old and, second, from her actual perspective

when she turns h + 1. By Proposition 3, the optimal consumption plan for age h + 1

from the perspective of age h requires that

du

dch+1

= β (1 + r) ·
νhh,h+2

νhh,h+1

· Eh+1

[
du

dch+2

]
, (31)

whereas the optimal consumption choice at age h+ 1 from the perspective of age h+ 1

requires that
du

dch+1

= β (1 + r) ·
νh+1
h+1,h+2

νh+1
h+1,h+1

· Eh+1

[
du

dch+2

]
. (32)
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Dynamic consistency with respect to the optimal consumption choice at age h + 1

thus holds if and only if the two first order conditions (31) and (32) coincide. Because

of νh+1
h+1,h+1 = 1, this is the case if and only if

νhh,h+2

νhh,h+1

= νh+1
h+1,h+2,

which holds for δ = 0, e(h)→∞ implying

νhh,h+2

νhh,h+1

=
ψh,h+2

ψh,h+1

= ψh+1,h+2 = νh+1
h+1,h+2,

but which is violated for δ > 0 since (generically)

νhh,h+2

νhh,h+1

=
δhλh + (1− δh)ψh,h+2

δhλh + (1− δh)ψh,h+1

6= δh+1λh+1 + (1− δh+1)ψh+1,h+2 = νh+1
h+1,h+2.

As in the static CPT model of Halevy (2008), the life-cycle maximization problem

of naive CEU agents is thus dynamically inconsistent. While dynamic inconsistency in

Halevy (2008) results from a fixed non-additive probability weighting function, dynamic

inconsistency in our model comes with a sequence of non-additive probability weighting

functions. Recall from our discussion of Section 3.2 that the latter are a consequence of

both updating of survival beliefs for finite experience and ambiguous survival beliefs.

Sophisticated Agents

Sophisticated agents are fully aware of their dynamic inconsistency. Self h tries to

influence future self’s h + 1 behavior via the choice of savings, xt+1. Hence, the usual

Envelope conditions which are standard in rational expectations problems no longer

apply, cf., e.g., Angeletos et al. (2001). As a result, the marginal propensities to

consume out of cash-on-hand (MPC), mh+1 ≡ ∂ch+1
∂xh+1

, show up explicitly in the first-

order conditions.

Combining first order conditions of optimality for the CEU agent results in a “gen-

eralized Euler equation with adjustment factor”:

Proposition 4. The generalized Euler equation with adjustment factor for the sophis-
ticated CEU agent at age h is given by

du

dch
= β (1 + r) · νhh,h+1 · Eh

[
Θh+1 ·

du

dch+1

+ Λh+1

]
(33)

where

Θh+1 ≡ mh+1 +
νhh,h+2

νhh,h+1 · νh+1
h+1,h+2

(1−mh+1) (34)
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and

Λh+1 ≡ β(1 + r)
νhh,h+2

νhh,h+1

(1−mh+1)

(
∂V h

h+2

∂xh+2

−
∂V h+1

h+2

∂xh+2

)
. (35)

Proof: See Appendix A.

Relative to the naive agent, the FOC of the sophisticated agent (33) hence fea-

tures two additional terms, Θh+1 and Λh+1. To interpret this condition, first assume

that Λh+1 = 0. Then (33)-(34) are analogous to the generalized Euler equation de-

rived in the (quasi-)hyperbolic time discounting literature, cf., e.g., Harris and Laibson

(2001). The latter refer to (the analogue of) expression βνhh,h+1Θh+1 as the “effec-

tive discount factor”. The condition is easiest to interpret by noticing that Θh+1 > 1

iff ϕh ≡
νhh,h+2

νhh,h+1·ν
h+1
h+1,h+2

> 1, which holds in our calibration of the CEU model. In this

case the marginal propensity to save (MPS) next period, 1 − mh+1, receives a higher

value than the MPC, mh+1, and self h correspondingly expresses higher patience than

according to the pure short-run discount factor βνhh,h+1. To gain further intuition ob-

serve that, as long as ϕh > 1, the effective discount factor varies inversely with next

period’s MPC, just as in the hyperbolic time discounting model. If self h+ 1 values con-

sumption more– by consuming more out of cash on hand– then self h compensates this

overconsumption of her own future self by increasing impatience, hence by consuming

more today and saving less.

Next, turn to the general case where Λh+1 6= 0. For sophisticated CEU agents the

value functions of selves h and h + 1 in periods h + 2 are age-dependent. A positive

difference
∂V hh+2
∂xh+2

− ∂V h+1h+2

∂xh+2
means that self h’s marginal valuation of cash-on-hand in pe-

riod h+ 2 is higher than self h+ 1’s. Under such a positive difference self h accordingly

values savings from h+ 1 to h+ 2 more than self h+ 1. This increases the RHS of (33)

thereby increasing savings already at age h.

4.6 Aggregation

Wealth dispersion within each age bin is only driven by productivity shocks. We denote

the cross-sectional measure of agents with characteristics (at, ηt) by Φt(at, ηt). Denote

by A = [0,∞] the set of all possible asset holdings and let E be the set of all possible
income realizations (encompassing both, the working and the retirement period). De-

fine by P (E) the power set of E and by B (A) the Borel σ-algebra of A. Let Y be the
Cartesian product Y = A× E and M = (B (A)) . The measures Φt(·) are elements of
M. We denote the Markov transition function– telling us how people with character-

istics (t, at, ηt) move to period t + 1 with characteristics t + 1, at+1, ηt+1– by Qt(at, ηt).
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The cross-sectional measure evolves according to

Φt+1 (A× E) =

∫
Qt ((at, ηt) ,A× E) · Φt (dat×dηt)

and for newborns

Φ1 (A× E) = N1 ·

Π(E) if 0 ∈ A
0 else.

The Markov transition function Qt(·) is given by

Qt ((at, ηt) ,A× E) =


∑

ηt+1∈E π
(
ηt+1|ηt

)
· ψt,t+1 if at+1 (at, ηt) ∈ A

0 else,

for all (at, ηt) ∈ Y and all (A× E) ∈ Y.
Aggregation gives average (or aggregate)

consumption: c̄t =
∫
ct(at, ηt)Φt(dat × dηt),

assets: āt =
∫
atΦt(dat × dηt),

income: ȳt =
∫
yt(ηt)Φtdηt,

total income: ȳtott = ȳt + rāt,

saving rate: s̄t =
∫
st(at, ηt)Φt(dat × dηt), where st(at, ηt) = 1− ct(at,ηt)

yt(ηt)+r·at
.

In the quantitative section we also study average saving plans of naive CEU agents.

By dynamic inconsistency, these agents update their plans in each period. As a way to

compare any gap between plans made at age h and realizations at t ≥ h for CEU agents

we denote the planned average saving rate with superscript h for the respective planning

age and compute

s̃ht =

∫
sht (at, ηt)Φ

h
t (dat × dηt), (36)

for all t. This gives hypothetical average profiles of the saving rate in the population if

households would stick to their respective period-h plans in all periods t = h, . . . , T . Ob-

serve that Φh
t (·) is an artificial distribution generated by respective plans of households.

By dynamic consistency, we have for both RE and sophisticated CEU agents that

sht (at, ηt) = s1
t (at, ηt) hence s̃ht = s̃t,

for all h = 1, . . . , T . These equalities hold for naive CEU agents only for t = h and,

independent of current age h, for t = T .
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5 Calibration

With the exception of the discount rate, all parameters of our baseline scenario are

calibrated without using the life-cycle model. We refer to these parameters, summarized

in Table 1, as (exogenous) first-stage parameters. The discount rate is accordingly

referred to as (endogenous) second-stage parameter, cf. Table 2. The remainder of this

section provides the details of our approach.

5.1 Household Age

Households enter the model at the biological age of 20 which we normalize to model

age 0. The retirement age is 62, hence tr = 42, according to the average retirement age

reported in the Survey of Consumer Finance (SCF).15 We set the horizon to a maximum

biological human lifespan at age 125, hence T = 105. This choice is motivated by

estimates based on Swedish female life-table data by Weon and Je (2009).

5.2 Objective Cohort Data

For objective survival rates we use average cross-sectional survival rates for the US be-

tween 2000-2010 taken from the Human Mortality Database (HMD). Data on survival

rates becomes unreliable for ages past 100 as age-specific sample-size is low. Bebbing-

ton et al. (2011) argue that a standard Gompertz-Makeham law, cf., e.g., Preston et

al. (2001), is ill-suited for estimating human survival rates at high ages.16 This is due

to the fact that human mortality, while first increasing exponentially with age, finally

decelerates for high ages past 95. To account for this mortality deceleration we fol-

low Bebbington et al. (2011) by applying the logistic frailty model. Accordingly, the

mortality rate µt at age t obeys

µt =
A exp (α · t)

1 + s2 (exp (α · t)− 1) A
α

+ εt, εt ∼ N (0, σ2), (37)

where the term in the denominator corresponds to the standard Gompertz-Makeham

law. We estimate parameters to get an out of sample prediction for ages past 100. The

resulting predicted mortality rate function fits actual data very well, cf. Figure S.3 of

the Supplementary Appendix. We use it as objective cohort data in the simulation.

According to our parameter estimates reported in Table 1, the implied average mor-

tality rate converges to a value of 0.57 at ages around 110 (t = 90). This is well in line

15We compute the average retirement age by pooling the SCF waves 1992-2007 and exclude respon-

dents younger than 45.
16However, see Gavrilova and Gavrilov (2015) for a recent criticism of this view.
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with Gampe (2010) who reports an annual mortality rate of around 0.5 for persons past

age 110 using data for a series of OECD countries on mortality rates of supercentenari-

ans.

5.3 Estimated Subjective Survival Beliefs

We follow Ludwig and Zimper (2013) and estimate parameters δ and λ, cf. equations (10)

and (18), to match the HRS data. Subjective survival rates are obtained by pooling a

sample of HRS waves {2000, 2002, 2004}. Except for heterogeneity in sex and age, we
ignore all other heterogeneity across individuals. Before proceeding with the estimation,

the experience function e(h) remains to be specified. Since the experience needs to be

a positive integer, a general functional form is e(h) ≡ ω · (20 + h), for ω ∈ N, which
assumes that experience starts at biological birth, cf. our discussion of Assumption A1

in Section 2.2. Identifying parameters in e(h) is not straightforward from our data on

survival beliefs alone because of the interplay with the other model parameters δ and λ.

In our baseline specification, we therefore restrict the learning speed such that ω = 1 and

consider an alternative parametrization for sensitivity analysis (see below). With this

baseline specification and parametrization we get δ = 0.0163 and λ = 0.413 and implied

values for δh and λh that lie well within reasonable ranges discussed in the literature

(see, e.g., Wakker 2010; Abdellaoui et al. 2011), cf. Figure 3 below.17 These parameters

are estimated with very high precision, also see Ludwig and Zimper (2013).

The predicted subjective survival rates resulting from our model of ambiguous sur-

vival beliefs fit their empirical counterparts, i.e., the average subjective survival beliefs

for each interview age h, from the HRS quite well, cf. Figure 2 in Section 6. The R2 of

the regression is around 0.8− 0.95.18

As a robustness check, we investigate the relevance of the parametrization of the

experience function. In particular, we consider a static model with constant experience

(e(h) = n for some n) to the effect that δh = δ̄ and λh = λ̄ for all h, cf. our discussion in

Section 3.2. Additionally, we study a calibration where we jointly identify ρ and ω to give

the best fit to the data on asset holdings. Further details are provided in Subsection 6.2.3.

17Estimation results are calculated separately for men and women. We take an equally weighted

average of the estimated parameters to get an approximation for λ and δ in the population.
18The fit is slightly better for women than for men, cf. Ludwig and Zimper (2013). They further

perform sensitivity analyses with regard to the choice of the initial age, the specific form of the experience

function and focal point answers. This shows that results do not hinge on these aspects. Finally, they

document that biases in beliefs are neither due to cohort effects nor selection biases.
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5.4 Prices and Endowments

Wages are normalized to w = 1. We take a three-state first-order Markov chain for the

income process in periods t = 0, . . . , tr − 1 with state vector Ew = [1 + ε, 1− ε, 0]. The

last entry reflects the state with zero income. Following the estimates of Carroll (1992)

we set the probability of receiving zero labor income to ζ = 0.005. Then the transition

matrix during the working period writes as

Πw =

 (1− ζ)κ (1− ζ)(1− κ) ζ

(1− ζ)(1− κ) (1− ζ)κ ζ

0.5 · (1− ζ) 0.5 · (1− ζ) ζ


for t = 0, . . . , tr. We take as initial probability vector of the Markov chain π0 =

[0.5, 0.5, 0]′, i.e., households do not draw zero income in their first period of life.

Values of persistence and conditional variance of the income shock process are based

on the estimates of Storesletten et al. (2004) yielding κ = 0.97 and ε = 0.68. Age

specific productivity {φt} of wages is estimated based on PSID data applying the method
developed in Huggett et al. (2007), cf. Ludwig, Schelkle and Vogel (2012).

In retirement, for t = tr, . . . , T , we take as state vector Er = [1, 0]. We assume an

even smaller probability to receive zero retirement income of ζr = 0.001 which reflects

default of the government on its pension obligations. We accordingly have

Πr =

[
1− ζr ζr

1− ζr ζr

]
for t = tr, . . . , T and we take as initial probability vector πtr+1 = [1− ζr, ζr]′.
The interest rate is set to r = 0.042 based on Siegel (2002). For the social security

contribution rate we take the US contribution rate of τ = 0.124. The pension benefit

level then follows from the social security budget constraint (24).

5.5 Preferences

Recall that we normalize utility from death to zero, i.e., if the household dies at the end

of period t− 1 we let u(ct) = u(0) = 0. As to utility from survival we take a CRRA per

period utility function with coeffi cient of relative risk aversion θ. For the intertemporal

elasticity of substitution (IES), 1/θ, we take a conventional value chosen in the literature

of 1/3, i.e., θ = 3. This choice implies that a standard CRRA utility function of the

form u(ct) =
c1−θt

1−θ is negative for all ct > 0. This would violate our assumption that

utility from survival is positive thereby exceeding utility from death. We cure this by

two additional modifications of the utility function. First, we add an additive prefer-

ence shifter to the per period utility function, denoted by Υ > 0. With this monotone
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Table 1: First-Stage Parameters

Parameter Source

Technology and Prices

w = 1 Gross wage normalized

r = 0.042 Interest rate Siegel (2002)

τ = 0.124 Social security contribution rate irs.gov

χ = 0.322 Net pension benefit level model outcome

Income Process

κ = 0.97 Persistence of income Storesletten et al. (2004)

ε = 0.68 Variance of income Storesletten et al. (2004)

{φt} Age specific productivity PSID

ζ = 0.005 Probability of zero labor income Carroll (1992)

ζr = 0.001 Probability of zero retirement income

Preferences

θ = 3 Coeffi cient of relative risk aversion

c = 1.0e− 08 Minimum consumption level

Subjective Survival Beliefs

δ = 0.0163 Initial degree of ambiguity HRS

λ = 0.413 Initial degree of over/underestimation HRS

ω = 1 Speed of the learning process

Age Limits and Survival Data

0 Initial model age (age 20)

tr = 42 Retirement (age 62) SCF

T = 105 Maximum human lifespan (age 125) Weon and Je (2009){
ψk,t
}

Cohort survival rates Predictions based on HMD

s = 0.41 Logistic frailty model HMD

α = 0.13 Logistic frailty model HMD

A = 2.9e− 06 Logistic frailty model HMD

Notes: First-stage parameters that are calibrated outside the life-cycle model.

32



Table 2: Second-Stage Preference Parameter: The Subjective Discount Rate

Target (Source) Asset profile (SCF)

RE ρRE = 0.0344

naive CEU ρCEU,n = 0.0343

sophisticated CEU ρCEU,s = 0.0426

Notes: Second-stage parameters are calibrated such that asset moments from the model best match

corresponding data moments.

transformation we can ensure (via calibration) that utility from survival is always pos-

itive. Of course, this does not affect optimal choices. Second, we take a Stone-Geary

specification of the utility function and accordingly let ct − c be its argument for some
very small c > 0. To understand this second modification observe that our specification

of the income process with a positive zero income probability achieves differentiability

of policy functions and positive asset holdings (and hence consumption) throughout but

very low consumption levels have positive probability. This makes it very hard to assign

values to Υ such that utility from survival is always positive. With a Stone-Geary-CRRA

utility function we have that optimal consumption choices satisfy ct > c because of the

lower Inada condition. Accordingly, setting Υ = −u(c) achieves strictly positive utility

in case of survival. Of course, for very small c, the effect of this modification on optimal

choices as well as on the IES is negligibly small. Collecting elements, the per-period

utility function reads as

u (ct) = Υ +
(ct − c)1−θ

1− θ
for Υ = − c1−θ

1−θ .

A key preference parameter of the model is the discount rate which we take as the

only second stage parameter in our baseline specification. We calibrate it such that

the average asset-to-permanent-income ratio from the model best matches the empirical

counterpart. This approach is in the spirit of Gourinchas and Parker (2002) and De

Nardi et al. (2010). Data on assets and permanent income is taken from the SCF.

Appendix B describes in more detail how the data is constructed.

Denote by ādatat average age-specific net-worth and by ȳpdatat average permanent-

income constructed by pooling SCF data from 1992 to 2007. As defined in Section 4.6,

āt is the model counterpart. Correspondingly, we denote model permanent income by ȳ
p
t

which is calculated as the constant annuity payment from the net present value of average

(labor, respectively retirement) income ȳt over the life-cycle discounted with the riskfree

interest rate r = 0.042.
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We target the life-cycle profile between ages 30 (t0 = 10) and 90 (T0 = 70). A starting

age of 30 is motivated by the fact that we do not explicitly model education decisions

so that our model does not match the data well at very young ages. Our choice of the

terminal age at 90 is due to data limitations at very high ages. Beyond age 90 there

are too few observations on assets in the data so that (smoothed) asset age profiles get

rather wiggly. Accordingly we search for ρ to solve

min
ρ

1

2

T0∑
t=t0

(
ādatat

(ȳpt )
data
− āt (ρ)

ȳpt (ρ)

)2

. (38)

For our baseline results, we calibrate a different subjective time discount rate ρ for

each of the three models, the RE, the naive and the sophisticated CEUmodel. Parameter

estimates in Table 2 document that the difference between subjective discount factors

calibrated for the RE and the naive CEU model is small whereas the difference to

the sophisticated CEU model is large. In Section 6.2 we explain the reason for these

differences. Importantly, we also investigate how results are affected by recalibration.

In these experiments we hold the discount rate constant at its calibrated value for the

RE agent.

6 Results

6.1 Ambiguous versus Rational Survival Beliefs

Figure 2 compares predicted subjective survival rates resulting from our model of am-

biguous survival beliefs with their empirical counterparts and corresponding objective

survival rates for men in Panel (a) and for women in Panel (b). Interview age is shown

on the abscissa. Actual subjective survival beliefs are depicted in the figure as a blue

solid line and corresponding objective beliefs as a red dashed-dotted line. To understand

this figure, recall that actual subjective survival beliefs are elicited in the HRS only for

a combination of interview ages and target ages. The step function of corresponding

objective beliefs follows from changes in the interview age / target age assignment. For

example, a 69 year old person is asked about her subjective assessment to live until

age 80 whereas a 70 year old is asked about her probability to reach age 85. The chance

to live from 69 to 80 is much higher than the chance to live from 70 to 85. Therefore,

objective survival beliefs drop discretely between interview ages 69 and 70. Furthermore,

within each interview age / target age bin, objective survival rates generally increase.

For example, the chance to survive from age 60 to 80 is lower than the chance to survive
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from age 61 to 80.19 Finally, the figure shows as a green dashed line the predicted sub-

jective survival rates from our model for the parameter estimates of δ and λ as given in

Table 1. Overall, we can conclude from this figure that the fit of predicted to actual sub-

jective survival rates is very good. In particular, the model replicates underestimation

of survival rates at younger ages and overestimation at older ages.

Figure 2: Objective, Subjective and Predicted Subjective Survival Rates
(a) Women (b) Men
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Notes: Unconditional survival probabilities to different specific target ages according to the questions

in the HRS. Interview age is on the abscissa. The solid blue line are subjective survival beliefs, the

dashed-dotted red line are the corresponding objective survival rates and the dashed green line are

simulated subjective survival beliefs from the estimated CEU model.

Figure 3 shows the age-specific degree of ambiguity in Panel (a) and the degree of

relative optimism in Panel (b) both as a function of planning age h. The degree of

ambiguity, δh, is a monotonically increasing and concave function over planning age h.

At the same time, relative optimism, λh, is a decreasing and convex function, albeit the

decrease in relative optimism over age is quantitatively small. Observe that there are two

dynamics in the model: first, psychological attitudes are changing over age according

to the pattern in Figure 3 and second, objective survival chances decrease in age, cf.

Figure A.3 in the Supplementary Appendix. This latter effect in combination with

the positive estimates of λh and δh leads to increasingly optimistic biases of predicted

subjective survival beliefs despite the fact that λh is slightly decreasing.

19On the other hand, our cohort based prediction of objective survival rates incorporates trends in

life-expectancy. In particular at relatively “young”ages it may therefore be that the objective survival

rate curve is downward sloping within interview age / target age bins. For example, the objective

survival rate of a 52 year old man to live to age 80 turns out to be slightly higher than of a 53 year old

man because the 52 year old man belongs to a younger cohort.
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Figure 3: Degree of Ambiguity and Relative Optimism over the Life Cycle
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Notes: Degree of ambiguity δh and relative optimism λh as a function of planning age h.

Figure 4 compares ambiguous subjective survival functions– i.e., the subjective haz-

ard rates– as red solid lines to their objective counterparts as black dashed lines. The

four panels of the figure represent different planning ages h. Panel (a) is for planning

age 20 (h = 0) and Panel (d) for planning age 85, (h = 65). In each of the four panels of

the figure, (future) age t ≥ h is depicted on the abscissa. Within each panel, experience

is unaltered and hence the ambiguity parameter δh and the optimism parameter λh is

constant. Across panels, experience and hence ambiguity is increasing whereas optimism

decreases slightly, according to the pattern of Figure 3. The initial point of survival func-

tions at age t = h is driven by ambiguity at that age. As planning age h increases, i.e.,

as we move from Panel (a) to Panel (d), the distance of this point to a survival rate of 1

increases. Generally, the subjective survival functions exhibit an initial blip relative to

the objective data.20

The key observation from Figure 4 is that subjective survival functions are flatter

than their objective counterparts which is in line with Hammermesh (1985), Peracchi

and Perotti (2010), Elder (2013) and several others. Furthermore, ambiguous survival

beliefs match the stylized fact described by Wu et al. (2013): People at a specific

planning (or interview) age underestimate their chances of survival to the nearer future

and overestimate survival probabilities to the more distant future. Also notice that

the overestimation of survival probabilities becomes more pronounced as the agent gets

older. I.e., the point at which the subjective and the objective survival curves intersect

20This initial blip results from the parsimonious structure of our model but otherwise does not affect

our results much, cf. Section 6.2.3 for a sensitivity analysis with respect to the size of this initial blip.
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moves to the left when moving across the figure from Panel (a) to Panel (d).

Figure 4: Survival Functions
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Notes: Unconditional objective and subjective probabilities viewed from different planning ages h.

Target age t is depicted on the abscissa.

6.2 Life-Cycle Profiles with Ambiguous Beliefs

6.2.1 Baseline Calibration

To highlight the effects of modeling subjective survival beliefs on life-cycle savings we

conveniently compress all information by showing average asset holdings of CEU agents

compared to RE agents who use objective survival data. We focus on the average

asset-to-permanent income ratio as described in the calibration section. We scale assets

with the same annuity value as the one used for estimating preference parameters, cf.

Section 5.5.

Figure 5 shows our results by displaying average asset holdings over the life-cycle

for the three types of agents, RE agents as the black dotted line, naive CEU agents as

the blue dashed line and sophisticated CEU agents as the red dashed-dotted line. The

profiles of our calibrated models are compared to the data, shown as a gray solid line.

Assets steadily increase until retirement entry and fall thereafter. This implies positive

saving rates during working life while agents dissave during retirement.

The overall shape of life-cycle asset holdings is explained as follows Households save

for life-cycle and precautionary motives. As to the latter, there are two forces triggering
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precautionary saving. One is the standard income risk, the second is the risk of drawing

zero labor income. Since the latter gives rise to a self imposed borrowing constraint, asset

holdings throughout the life-cycle are always positive. As agents become older, life-cycle

motives for saving become more and more relevant and motives for precautionary saving

become less strong, also see, e.g., Gourinchas and Parker (2002). Assets are accumulated

in order to finance retirement consumption. In retirement, the only precautionary motive

to save is to avoid zero resources in all income states. This motive again becomes more

and more relevant as asset holdings converge towards zero when agents get older.

Figure 5: Assets-to-Permanent Income, CEU, RE and Data
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Notes: Average asset-to-permanent-income ratios from SCF data and for CEU and RE agents using

recalibrated preference parameters ρ for all models. The data covers ages 30 and 95. Details on

data are provided in Appendix B.

With regard to differences in asset accumulation across types, first focus at the RE

type. Relative to the data, the dynamically consistent RE model features higher saving

and therefore stronger asset accumulation on average until retirement and a faster speed

of asset decumulation thereafter. Accordingly, through the lens of the RE model the

data are puzzling: households save too little until retirement in the data relative to the

RE model and have asset holdings in old age that are too high (in the data relative to

the RE model). Any attempt to improve the fit of the RE model by, e.g., decreasing

the discount rate would lead to a lower speed of asset decumulation at the cost of even

higher saving during the working period and vice versa.

On the contrary, the calibrated naive CEU model gives rise to less saving during

the accumulation phase and a much slower speed of asset decumulation than for the RE
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model, moving it close to the data. The driving force for undersaving (relative to the RE

model) is pessimism with regard to survival prospects. The reason for high old-age asset

holdings is the strong optimism with regard to surviving into the future, cf. Figure 4.

The sophisticated CEU model generates very similar results compared to the naive

CEU model: on average saving rates during the working period are almost identical

and so is asset accumulation. Old-age asset holdings of sophisticated agents are slightly

higher than those of naive agents. The reason is that sophisticates, by foreseeing the

optimistic biases of their own future selves, decumulate assets at a lower speed for

reasons of consumption smoothing. The close similarities between the two CEU agents

only occur because we recalibrate the discount rate. It is almost one percentage point

higher for the sophisticated agent, cf. Table 2. We discuss this in detail below in

Section 6.2.2, where we also provide additional interpretation for our findings.

Table 3 comprises our results by reporting summary statistics for all three agent

types and the data. As a summary statistic for the goodness of fit of the three models

we report the R2s from the non-linear regressions in (38). While R2 looses its usual

interpretation in non-linear models as a measure of the fraction of the overall variation

explained by the model, it is still a useful summary statistic of goodness fit. It is bounded

from above by 1 and a value closer to 1 indicates better fit. Results on the R2s confirm

the visual impression gained from Figure 5, i.e., the fit of the naive CEU model is best

and the one of the RE model is worst.

The average saving rate of both the naive and sophisticated CEU agents during the

prime saving years, ages 25-54, is about 9.4%. The corresponding average saving rate

in the US is 9.5%.21 On the contrary, RE agents save on average 13.5%, exceeding the

relevant data by 4 percentage points.

Comparing plans and realizations for naive CEU agents we observe that, initially,

CEU agents plan to save more and consume less during working life which would result

in higher assets. The planned average saving rate of naive CEU agents at age 20 for

ages 25-54 is 15.1%, compared to the average realized saving rate for that age bin

of 9.4%. The fact that actual saving behavior deviates from plans naturally follows

from time inconsistency. That saving is lower than planned means that households

moderately overestimate their future survival rates, leading us back to the predictions

of the simple 3-period model, cf. the Supplementary Appendix. If overestimation was

stronger, then they would actually save more than originally planned. The patterns we

find are qualitatively consistent with findings in the literature on undersaving: Barsky

21The SCF does not contain quantitative questions on saving, only qualitative ones such as whether

one had positive saving. Furthermore, as the SCF does not have a panel dimension, we cannot compute

savings from changes in assets. Thus, we chose CES data as reported by Bosworth et al. (1991).
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Table 3: Summary Statistics

RE CEU Data1)

Naive Soph.

R2 0.756 0.946 0.937

Saving rate2) 13.5% 9.4% 9.4% 9.5%

Saving rate, planned2) − 15.1% −
Assets at age 75 relative to 623) 70.0% 77.7% 78.7% 72.4%

Assets at age 85 relative to 623) 37.0% 56.8% 60.5% 53.0%

Assets at age 95 relative to 623) 9 .1% 34 .8% 41 .8% 47 .9%

1) The data for asset decumulation is calculated from SCF data. Due to small sample sizes, SCF

data on average asset holdings at age 95 cannot be measured reliably and are thus reported in

italics. The saving rate is the weighted average of ages 25-54 between 1980-85 from the Consumer

Expenditure Survey (CES) as reported by Bosworth et al. (1991), Table 3.
2) The average saving rate as is defined as the average of individual saving rates between ages 25

and 54. The average planned saving rate is the rate for ages 25-54 planned at age 20.
3) Average asset holdings at age 75, 85 and 95 relative to assets at retirement entry at age 62.

et al. (1997) document that agents have a preference for constant or upward sloping

consumption paths which cannot be achieved by observed saving rates. Lusardi and

Mitchell (2011) present survey results showing that out of those households that made

a retirement savings plan, the majority was not able to stick to their plan. Finally, Choi

et al. (2006) document that two thirds of respondents in a survey have saving rates

below their ideal ones.

Finally, Table 3 also summarizes the sizable differences in old-age asset holdings

between RE and CEU agents. For naive CEU agents, average asset holdings at ages

75, 85 and 95 relative to those at retirement entry are 77.7%, 56.8% and 34.8% compared

to 72.4%, 53.0% and 47.9% in the data. Recall that the last data point, i.e., asset holdings

at age 95, has to be looked at with care because of few observations. On the contrary,

these values are only at 70.0%, 37.0%, and 9.1% for RE agents. Sophisticated CEU

agents have even higher assets at old age relative to assets at retirement entry. Also

notice that the overall fit of the sophisticated CEU model to the data is worse than for

naive agents.

We can therefore conclude that the combination of ambiguous survival beliefs with

the assumption of naivety has to be considered as a candidate explanation for the joint

occurrence of low retirement savings, time inconsistent saving behavior and high old-age

asset holdings.
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6.2.2 The Effects of Discounting

As described in Section 5, the calibrated discount rate varies across all model variants

in our baseline results, cf. Table 2. This section documents how our main findings are

affected by this approach to calibration. To this end, we hold constant the value of the

discount rate calibrated for the RE model of 3.4% and use it in the two variants of the

CEU model. With this strategy we single out the pure effects of ambiguous survival

beliefs. Results on asset holdings are displayed in Figure 6 and corresponding summary

statistics are provided in Table 4.

Figure 6: Assets-to-Permanent Income, CEU, RE and Data: Constant ρ
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Notes: Average asset-to-permanent-income ratios from SCF data and for CEU and RE agents using

ρRE = 0.034 as a preference parameter for all models. The data covers ages 30 and 95. Details on

data are provided in Appendix B.

As the difference of calibrated discount rates between the RE and the naive CEU

models is not large, cf. Table 2, our results do not change much for naive CEU agents.

With the lower RE-model discount rate, saving increases slightly and hence the average

asset decumulation speed also decreases. TheR2, as a summary statistic for the goodness

of fit, decreases very mildly to 0.945.

Significant changes occur for the sophisticated CEU model where the calibrated

discount rate is almost one percentage point higher in our baseline calibration. Relative

to this, the R2 strongly decreases to 0.823. The saving rate during the working period

goes up to 11.6% which is– although still lower than for the RE agent– more than

observed in the data.
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Table 4: Summary Statistics: Constant ρ 1)

Naive CEU Soph. CEU Data

Baseline ρRE Baseline ρRE

R2 0.946 0.945 0.937 0.823

Saving rate 9.4% 9.3% 9.4% 11.6% 9.5%

Saving rate, planned 15.1% 15.0% − −
Assets at age 75 relative to 62 77.9% 77.7% 79.0% 82.8% 72.4%

Assets at age 85 relative to 62 57.1% 56.8% 60.8% 66.5% 53.0%

Assets at age 95 relative to 62 34 .9% 34 .8% 42 .1% 48 .3% 47 .9%

Notes: See Table 3 for a description of how the statistics are constructed.

We complement this picture by displaying life-cycle consumption relative to perma-

nent income across agent types (again holding ρ constant) in Figure 7. At younger ages,

both the naive and the sophisticated households consume more than RE agents. In the

middle stages of the life-cycle optimism starts to dominate their survival belief forma-

tion. This increases the consumption growth rate so that both CEU agents consume less

at middle and more at old age than RE agents. Finally, observe from the figure that

sophisticates indeed consume less at young ages than do naifs leading to higher asset

holdings over the life-cycle.

Again, the simple three-period model from the Supplementary Appendix provides

guidance for understanding these results. Sophisticates foresee the increasing optimism

of their own future selves. Given their relatively low inter-temporal elasticity of substi-

tution of 1/3 they therefore place a high value on the marginal utility from saving, give

up on consumption when young and build up higher asset positions during the working

period than their naive counterparts. In consequence, they also decumulate assets at a

lower speed in old age.

6.2.3 The Effects of Experience

We next analyze the importance of our assumed experience function for life-cycle asset

holdings. First, we assume constant experience by setting e(h) = n for some n ∈ N
which implies that δh = δ̄ and λh = λ̄ for all h, cf. Section 3.2. Observe that the

three parameters n, δ, λ are not separately identified in this specification. We therefore

directly estimate δ̄, λ̄, giving δ̄ = 0.565 and λ̄ = 0.424. Second, we determine ρ and ω

jointly to give the best fit on life-cycle asset holdings by minimizing function (38). This

gives ω = 127, δ = 0.00013 and λ = 0.412.
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Figure 7: Life-Cycle Consumption of CEU and RE: Constant ρ
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Notes: Average consumption relative to permanent income as described in the calibra-

tion section over the life-cycle for CEU and RE agents using ρRE = 0.034 as a preference

parameter for all models.

Our results show that the key quantitative implications of our model are little affected

by the experience function, even when assuming constant experience. For this scenario,

the average saving rate decreases for both CEU types, cf. Table 5. The reason is the

initial blip of subjective survival beliefs at younger ages, cf. Figure 4, which now is larger.

Hence, the initial underestimation of survival beliefs is more pronounced yielding lower

saving rates.22 For naive CEU agents, the difference between planned and realized saving

rates increases. The asset decumulation speed during the retirement period, however, is

little affected. Finally, notice that the R2s decrease compared to our baseline scenario.

The data thus supports our notion that Bayesian learning of ambiguous survival beliefs

happens over the life cycle.

The model with the “best fit”speed of learning process, ω = 127, gives very similar

results as our baseline specification. Relative to that, the R2 increases only mildly and

summary statistics are little affected. The reason for these small changes is that an

increase of e(h) at all ages mainly affects the level of our estimate for δ (the point

estimate decreases from 0.0163 in our baseline specification to 0.00013) whereas λ is

basically unchanged and λh is now virtually flat. Because λh is already relatively flat

in our baseline parametrization with ω = 1, cf. Figure 3, and because the level change

22In our baseline specification, the subjective belief of a 20-year old to survive to age 21 is 0.811, cf.

Figure 4, in the model variant with constant experience it is only 0.675.
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Table 5: Summary Statistics: The Effect of Experience

Naive CEU Sophisticated CEU

baseline e(h) = n ω = 127 baseline e(h) = n ω = 127

Discount rate ρ 0.0343 0.0323 0.0344 0.0462 0.0421 0.0428

R2 0.946 0.937 0.9464 0.937 0.926 0.939

Saving rate 9.4% 8.6% 9.7% 9.4% 8.9% 9.4%

Saving rate, planned 15.1% 16.6% 14.7% − − −
Assets at 75 rel. to 62 77.9% 79.0% 77.6% 79.0% 79.9% 78.5%

Assets at 85 rel. to 62 57.1% 58.5% 56.4% 60.8% 62.1% 60.1%

Assets at 95 rel. to 62 34 .9% 36 .0% 34 .3% 42 .1% 43 .2% 41 .3%

Notes: Results for the CEU model with constant experience, e(h) = n, and with the “best fit”

learning speed, ω = 127. For a description of how the statistics are constructed see Table 3.

of δ does not affect the dynamics much, results are not affected much by increasing ω

beyond our baseline level of 1. It is important to emphasize that our estimation is

unrestricted, i.e., we also allow for negative values of ω despite our theoretical restriction

that ω ∈ N. Hence, this sensitivity analysis also shows that increasing experience– and
thereby increasing δh and decreasing λh– is not only plausible on a priori grounds– cf.

our discussion in Section 3.2– but also supported by the data.

7 Concluding Remarks

This paper constructs a model of Choquet Bayesian learning of ambiguous survival be-

liefs. In a next step, it studies implications of ambiguous survival beliefs for consumption

and saving behavior. Point of departure of our analysis is that people make mistakes in

assessing their chances to survive into the future: “young”people tend to underestimate

whereas “old”people tend to overestimate their survival probabilities. We construct and

parametrize a model of Bayesian learning of ambiguous survival beliefs which replicates

these patterns. The resulting conditional neo-additive survival beliefs are merged into

a stochastic life-cycle model with CEU (=Choquet expected utility) agents to study

life-cycle consequences compared to agents with rational expectations (RE).

We show that agents of our model behave dynamically inconsistent. As a result,

CEU agents save less at younger ages than they actually planned to save. Due to under-

estimation of survival at young age, CEU agents also save less than RE agents. Despite

this tendency to undersave, CEU agents eventually have higher asset holdings after

retirement because of the overestimation of survival probabilities in old age. Overall,
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the calibrated CEU model provides an accurate quantitative picture of life-cycle asset

holdings until about age 85. Furthermore, the assumption of naive CEU agents better

fits the data than the assumption of sophisticated CEU agents. Our model of biases in

the assessment of survival prospects therefore adds to explanations for three empirical

findings: (i) time inconsistency of agents, (ii) undersaving at younger ages and (iii) high

asset holdings at old age. Hence, our model hits at– but does not kill– “three birds

with one stone”.

Our work gives rise to several avenues of future research. First, observe that the am-

biguous survival belief functions depicted in Figure 4 closely resemble quasi-hyperbolic

time discounting functions, cf., e.g., Laibson (1997). In Groneck et al. (2014) we com-

pare the formal relationship between quasi-hyperbolic time-discounting, on the one hand,

and a static CPT/CEU model, on the other hand. As our main finding we show that

quasi-hyperbolic time-discounting over the life-cycle is formally equivalent to a static

CPT/CEU life cycle model with neo-additive capacities such that (i) the ambiguity pa-

rameter is positive whereas (ii) the optimism parameter is zero. Our analysis further

implies that a positive optimism parameter rather than Bayesian learning under ambi-

guity is responsible for the qualitative feature that CPT/CEU agents might– in contrast

to quasi-hyperbolic time-discounting agents– oversave in old age.

Second, we plan to combine our notion of CEU agents with bequest motives in order

to cover important aspects of life-cycle decisions. The main challenge for this generalizing

approach will be to come up with a parsimonious model in which all calibrated behavioral

parameters are identified.

Third, we will extend our framework to address normative questions on the op-

timal design of the tax and transfer system, similar to Laibson et al. (1998), Imro-

horoglu et al. (2003) and, more recently, Pavoni and Yazici (2012, 2013) in the hyperbolic

time discounting literature.

Finally, in our current research, cf. Grevenbrock et al. (2015), we identify probabil-

ity weighting functions by using the full panel dimension of the HRS. Specifically, we

construct estimated objective survival rates and compare those to subjective ones at the

individual level. We use this data to estimate inverse-S-shaped probability weighting

functions which we identify for different age groups. Approximating these functions

linearly lends empirical support to the dynamics of our learning model (which we here

derive solely on theoretical grounds based on decision theoretic foundations). That is,

we indeed find in our extended data analysis that the optimism parameter is decreasing

whereas the ambiguity parameter is increasing in age.
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A Appendix: Proof of Propositions

A.1 Proof of Proposition 1

First, note that for arbitrary α and β,

µ
(
Ĩe(h) = j

)
=

(
e (h)

j

)
(α + j − 1) · ... · α · (β + e (h)− j − 1) · ... · β

(α + β + e (h)− 1) · ... · (α + β)
, (39)

for j ∈ {0, ..., e (h)} .

The uniform distribution is characterized by α = β = 1, implying for (39) that

µ
(
Ĩe(h) = j

)
=

(
e (h)

k

)
k! (e (h)− k)!

(e (h) + 1) · e (h)!

=
1

1 + e (h)
.

That is, for any number of possible survivors j ∈ {0, ..., e (h)} the ex ante probability
to actually observe this number for a sample of size e (h) is, by A1, identically given as

1
1+e(h)

. Substituting this probability back into (13) gives (16).

Next, substitute α = β = 1 and j
e(h)

= ψk,t in (4) to obtain (15). Finally, collect

terms and substitute into (12).�

A.2 Proof of Proposition 2

Fix age h and consider the neo-additive probability space
(
Ω,F , νhh

)
of Definition 2. By

straightforward transformations, we obtain that

T∑
t=h+1

ψ (Dt | Zh)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]

=
T∑

t=h+1

βt−hE [u (ct) , π (ηt|ηh)] · ψ (Dt ∪ ... ∪DT | Zh)

=

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)] · ψh,t.
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Consequently, (26) can be equivalently rewritten as

E
[
U (c) , νhh

]
= δh

(
λh

(
u(ch) +

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]
)

+ (1− λh)u(ch)

)

+ (1− δh)
(
u(ch) +

T∑
t=h+1

ψ (Dt | Zh)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]
)

= u(ch) + δhλh

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh,t · βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +
T∑

t=h+1

νhh,t · βt−hE [u (ct) , π (ηt|ηh)] ,

which proves the proposition.�

A.3 Proof of Proposition 4

The value functions of self h in periods h and h+ 1 are given by

V h
h (xh, ηh) = max

ch,xh+1

{
u (ch) + βνhh,h+1Eh

[
V h
h+1

(
xh+1, ηh+1

)]}
V h
h+1

(
xh+1, ηh+1

)
= max

ch+1,xh+2

{
u (ch+1) + β

νhh,h+2

νhh,h+1

Eh+1

[
V h
h+2

(
xh+2, ηh+2

)]}
.

For self h+ 1 we accordingly have

V h+1
h+1

(
xh+1, ηh+1

)
= max

ch+1,xh+2

{
u (ch+1) + βνh+1

h+1,h+2Eh+1

[
V h+1
h+2

(
xh+2, ηh+2

)]}
.

The first-order conditions with respect to consumption for selves h and h + 1 are

given by

du

dch
= βRνhh,h+1Eh

[
∂V h

h+1(·)
∂xh+1

]
(40a)

du

dch+1

= βRνh+1
h+1,h+2Eh+1

[
∂V h+1

h+2 (·)
∂xh+2

]
. (40b)

To get an expression for the derivative of the value function of self h with respect to

cash-on-hand in period h+ 1, appearing on the right-hand-side of (40a), notice that the

familiar Envelope condition does not hold. This captures the notion that self h correctly
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anticipates that future self h + 1 will deviate from the optimal consumption plan of

self h. The respective derivative of the value function writes as

∂V h
h+1(·)
∂xh+1

=
du

dch+1

mh+1 + βR
νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∂V h

h+2(·)
∂xh+2

]
(41)

= mh+1

(
du

dch+1

− βR
νhh,h+2

νhh,h+1

Eh+1

[
∂V h

h+2(·)
∂xh+2

])
︸ ︷︷ ︸
6=0, i.e., the envelope condition does not hold.

+ βR
νhh,h+2

νhh,h+1

Eh+1

[
∂V h

h+2(·)
∂xh+2

]
where mh+1 ≡ ∂ch+1

∂xh+1
.

Collecting equations, the relevant first-order conditions of self h are (40a) and (41).

Condition (40b) is a constraint to the maximization problem of self h, again because

self h correctly anticipates optimality of behavior of self h+ 1.

Rewrite (40b) by adding and subtracting terms as

du

dch+1

= β (1 + r) νh+1
h+1,h+2Eh+1

[
∂V h+1

h+2 (·)
∂xh+2

]

+ β (1 + r) νh+1
h+1,h+2Eh+1

[
∂V h

h+2(·)
∂xh+2

−
∂V h

h+2(·)
∂xh+2

]
to get

βREh+1

[
∂V h

h+2(·)
∂xh+2

]
=

du

dch+1

1

νh+1
h+1,h+2

+ βREh+1

[
∆V h,h+1

h+2

]
, (42)

where ∆V h,h+1
h+2 ≡

[
∂V hh+2(·)
∂xh+2

− ∂V h+1h+2 (·)
∂xh+2

]
.

Next, use (42) in (41) to get

∂V h
h+1(·)
∂xh+1

=
du

dch+1

mh+1 +
νhh,h+2

νhh,h+1

(1−mh+1)

(
du

dch+1

1

νh+1
h+1,h+2

+ βREh+1

[
∆V h,h+1

h+2

])

=
du

dch+1

(
mh+1 +

νhh,h+2

νhh,h+1ν
h+1
h+1,h+2

(1−mh+1)

)
+ βR

νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∆V h,h+1

h+2

]
.

Using the above in (40a) we finally get

du

dch
= βRνhh,h+1Eh

[
du

dch+1

(
mh+1 +

νhh,h+2

νhh,h+1ν
h+1
h+1,h+2

(1−mh+1)

)

+ βR
νhh,h+2

νhh,h+1

(1−mh+1)Eh+1

[
∆V h,h+1

h+2

]]

= βRνhh,h+1Eh
[
du

dch+1

Θh+1 + Λh+1

]
.
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B Appendix: Details on SCF Data

The Survey of Consumer Finances (SCF) is a representative triennial cross-sectional

survey of U.S. families sponsored by the Federal Reserve Board in cooperation with

the Department of the Treasury. We merge data from the six waves 1992, 1995, 1998,

2001, 2004 and 2007. We use households whose heads are aged 26-95. Our total sample

contains 21.560 respondents.

To construct the average life-cycle profile of the– appropriately smoothed (see below)–

asset-to-permanent-income ratio we proceed as follows.23 Define assets as net worth

including housing wealth, but excluding implicit pension and social security wealth.

We deflate assets and income to 1992 Dollars. To approximate permanent income we

first compute gross labor and social security income by excluding income from capi-

tal gains.24 Using data from Cagetti (2003)– who approximates tax rates for different

income percentiles– we next compute after-tax income. Based on the– appropriately

smoothed (see below)– age-specific averages of net income we compute the net-present

value and convert this to annuities using the calibrated interest rate of r = 0.042. This

gives our permanent-income approximation. Finally, we compute the asset-to-income

ratio from these two time series.

Average age-specific assets and net income are both smoothed over age by applying

a cubic spline regression. We use robust fitting by three iterations of weighted least

squares. Respective weights are computed from previous residuals.

23To construct the data we adopted the approach described in Chris Carroll’s lecture notes,

cf. http://www.econ2.jhu.edu/people/ccarroll. We thank Chris Carroll for providing us the Stata code.
24Our income measure includes ’wages and salaries’, ’unemployment or worker’s compensation’, ’child

support or alimony’, ’TANF, food stamps, or other forms of welfare or assistance’, ’net income from

Social Security or other pensions’, ’annuities, or other disability or retirement programs’and ’any other

sources’. We exclude some few observations with negative income values.
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S Supplementary Appendix: A Life-Cycle Model

with Ambiguous Survival Beliefs

S.1 Age-increasing Ambiguity. An Explanantory Discussion

Note that age-increasing ambiguity in our Choquet Bayesian learning model is not an

ad hoc assumption but rather a formal implication which turns out to be remarkably

robust with respect to alternative Bayesian update rules for Choquet decision makers

(cf. Gilboa and Schmeidler 1993; Zimper 2011). One reason is that ambiguity here

applies to the joint probability of the parameter and sample space so that the updating

process itself–and not only the distribution over parameters–is subject to ambiguity.

As a consequence, the agent does not perceive the data generating process as i.i.d.

as in the standard (non-ambiguous) Bayesian set-up. Furthermore, a large amount of

statistical information refers to an event which has an ex ante small likelihood to be ex

post observed within this non-i.i.d. environment. Bayesian updating under ambiguity

“punishes” small ex ante likelihoods in the sense that the decision maker’s ambiguity

increases if she observes information which she considered ex ante as unlikely. In what

follows we present four reasons why this rather mechanical consequence of the updating

process also has some intuitive appeal.

First, an age-increasing  captures the intuitive notion that, as the objective risk of

survival becomes less likely, agents attach less and less weight to this objective proba-

bility. Our model’s convergence property implies that survival rates are overestimated

eventually even when the initial degree of ambiguity, , is low. Overestimation at old

age may result from the fact that people have survived the gamble against death sev-

eral times before. Consequently, one possible heuristic interpretation of age-increasing

 might be that people want to avoid a realistic assessment of their encounter with

death.1

Second, the concept of likelihood-insensitivity (cf., Wakker 2004; 2010; Abdellaoui

et al. 2011), may provide an alternative heuristic interpretation for the age-increasing

 of our model. These authors interpret  not as an ambiguity but rather as a cog-

nitive parameter which reflects the empirical observation that people do not sufficiently

distinguish between non-degenerate probabilities. For instance, an extreme example for

likelihood insensitivity are “fifty-fifty” probability assessments for any uncertain event

and its complement. Under this cognitive interpretation, likelihood insensitivity–and

1This interpretation is consistent with the observation of Kastenbaum (2000) who summarizes the

insights of psychological research on the reflection about personal death as follows: “There are divergent

theories and somewhat discordant findings, but general agreement that most of us prefer to minimize

even our cognitive encounters with death.”

1



not necessarily ambiguity–would increase with age. Given that old people increasingly

suffer from cognitive impairments, this alternative interpretation has some intuitive ap-

peal.

Third, Nicholls et al. (2014) investigate whether violations of Savage’s (1954) sure-

thing principle (STP), typically interpreted as the expression of ambiguity attitudes,

decrease or increase if the subjects receive an increasing amount of statistical informa-

tion. As their main finding, these authors conclude that “[] statistical learning has, at

best, no impact on STP violations. At worst, it might even be causing STP violations

to increase.” (p. 14). This empirical finding suggests that conventional wisdom about

Bayesian learning might not be adequate for situations with ambiguity.

Finally, there exist alternative models of Bayesian learning under ambiguity such

that ambiguity might decrease in the amount of statistical information.2 Within a

multiple-priors set-up, Marinacci (2002) restricts ambiguity to the parameter space

whereas Bayesian updating happens with respect to a standard (i.e., non-ambiguous)

i.i.d. data-generating process. The convergence behavior of the Bayesian learning pro-

cess in the Marinacci (2002) model crucially depends on the support of the priors held

by the decision maker. If not all priors have the same support, ambiguity does not

necessarily vanish when an unlimited amount of statistical information becomes avail-

able. Epstein and Schneider (2007) consider two dimensions of ambiguity. First (as in

Marinacci 2002), ambiguity with respect to prior beliefs is expressed through multiple

priors; second, ambiguity with respect to the updating process is expressed through

multiple likelihoods. Furthermore, these authors impose a specific expected maximum

likelihood criterion as a prior-selection rule. This may reject initially plausible priors

in light of new information. Ambiguity with respect to posterior beliefs vanishes in

the original Epstein and Schneider (2007) model if, and only if, there is no ambiguity

with respect to the updating process. However, even if there is no ambiguity with re-

spect to the updating process, ambiguity might not vanish in a modified–and ad hoc

equally plausible–version of the Epstein and Schneider (2007) model. This model would

consider–instead of the expected maximum likelihood criterion–some alternative prior

selection rule such as the minimal Kullback-Leibler divergence criterion (cf. Zimper and

Ma 2014). The analysis in Marinacci (2002) and in Epstein and Schneider (2007) thus

suggests that it requires quite strong ad hoc assumptions on the priors’ support, on

the updating process as well as on the prior-selection rule for ambiguity to vanish in

alternative theoretical models of Bayesian learning under ambiguity.

2For a detailed discussion of these models we refer the interested reader to Zimper and Ma (2014).
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S.2 A Three-Period Model

We provide the intuition for how ambiguous survival beliefs affect consumption and

saving behavior in a simple three-period model ( = 2) without income risk which can

be solved analytically. In this simple model we abstract from borrowing constraints,

hence +1  0, for    is possible. The no-Ponzi condition +1 ≥ 0 is of course
assumed. To simplify the analysis we assume the discount factor  to be one and an

interest rate  of zero.

As shown in Section 4 or the paper, lifetime utility for  = 2 with ambiguous survival

beliefs is expressed as

0
0 = (0) + 001

µ
(1) +

002

001
(2)

¶


where  is the subjective survival belief from Proposition 1 of the paper. Recall that

superscripts denote the respective planning age.

As in the paper, we normalize the utility from death to zero and assume a  per-

period utility function with preference shifter Υ ≥ 0 for the utility from survival. Since

we here ignore income risk the additional Stone-Geary parameter ̄ is not required. Also

recall that lifetime utility of CEU agents reduces to the standard rational expectations

case if and only if there is no initial ambiguity, i.e., iff  = 0.

We define by  ≡  +  cash-on-hand as the sum of financial assets  and income

 In addition, define the present value of future income,  ≡
P

=+1  as human

wealth. Finally, let total wealth be  ≡ + The budget constraint is then given by

+1 =  − 

In light of the data on subjective beliefs displayed in Figure 1 of the paper we

interpret period 0 of the simple model as the period when survival probabilities are

underestimated, i.e., up to actual age of about 70. Period 1 then reflects the period when

there is overestimation in the data. Correspondingly, we make the following assumption:

Assumption S1. We assume for some   0 that

01  001 = 00 + (1− 0)01 (1)

i.e., that 0  01, as well as

12  112 = 11 + (1− 1)12 (2)
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i.e., that 1  12.
3

We now turn to the complete inter-temporal household solution to analyze how

consumption and saving decisions are altered by biases in subjective survival beliefs.

S.2.1 Rational Expectations

The reference model is the standard solution to the rational expectations model (where 0 =

1 = 0). Here, lifetime utility does not depend on the planing period, i.e., 
0
1 = 1

1 , and

in period 0 it is given by 0 = (0) + 01
¡
(1) + 12(2)

¢


Observation S1. Policy functions of the rational expectations solution are linear in

total wealth,  = , where

 =

⎧⎪⎪⎨⎪⎪⎩
1

1+
(+1)

1


+1

for   

1 for  = 

Hence:

0 =
1

1 + 
1


01 + 
1


02

 1 =
1

1 + 
1


12



Proof. See, e.g., Deaton (1992) ¤.

S.2.2 Naive CEU Households

To draw a distinction between RE and CEU households, we use superscript  to denote

policy functions (in terms of marginal propensities to consume) of aive CEU house-

holds. Given that the household consumes all outstanding wealth in the final period 2

(i.e., 
2 = 1) the solution of the household’s problem for all other periods are as follows:

3Notice that, despite equation (2), we may have that the household in period 0 underestimates the

probability to survive from period 1 to 2, hence we may have that

12  012 = 0+ (1− 0)12

This is so because 0  1 and therefore less weight is put on the relative optimism parameter .
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Proposition S1. For the naive CEU household we get:

• The solution to the problem in period 1 is:

1 = 
11 where 

1 =
1

1 +
¡
112
¢ 1


 (3)

• The plan in period 0 for period 1 is:


0
1 = 

0
1 1 where 

0
1 =

1

1 +
³
002
001

´ 1


 (4)

where we denote the planning period as a superscript.

• The solution in period 0 is:

0 = 
00 where 

0 =
1

1 +
(001)

1



0
1

=
1

1 + (001)
1
 + (002)

1


 (5)

Proof. The first-order condition in period 1 is:

(1) = 112(2)

which directly yields (3). Analogously, the first-order condition for period 1 from

the perspective of period 0 is given by:

(1) =
002

001
(2)

which yields (4). Finally, the first-order condition in period 0 is:

(0) = 001(1)

yielding


0 =

1

1 +
(001)

1



0
1



Notice that

(001)
− 1


0
1 =

(001)
− 1


1 +
³
002

001

´ 1


=
1

(001)
1
 + (002)

1




Using this in the above gives the last term in (5).¤

Comparing the policy functions of the RE agent (cf. Observation S1) and the naive

agent (cf. Proposition S1) yields the following Proposition S2 which highlights the conse-

quences of ambiguous survival beliefs for life-cycle consumption and asset accumulation.
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Proposition S2. Comparing the naive CEU agent to the RE agent we get the following

implications:

• There is undersaving in a sense that


0  0 ⇔ 0  0 ⇔ 

1  1

if and only if there is sufficient underestimation (SU) of survival risk by the

naive CEU agent in a sense that

(001)
1
 + (002)

1
  

1


01 + 
1


02 (SU)

• Naive CEU agents save less in period 1 than originally planned, i.e.,


0
1  

1 

if and only if there is moderate overestimation (MO) of survival risk in a

sense that

112 
002

001
 (MO)

• There is oversaving in the sense that


1  1 ⇔ 2

1


2

1
⇔ 

2


1


2

1


by Assumption S1, equation (2) (i.e., by overestimation). Combined with

condition (SU) this implies that

1  1

• Naive CEU agents have higher wealth than RE agents


2  2 ⇔ 2  2

if and only if there is sufficient overestimation (SO) of survival beliefs in

period 1 in a sense that

112  12

⎛⎝1 + (001) 1 + (002) 1
1 + 

1


01 + 
1


02

· 
1


01 + 
1


02

(001)
1
 + (002)

1


· 1 + (
1
12)

1


1 + 
1


12

⎞⎠

 12

(SO1)
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Proof.

• That
0  0 under condition (SU) immediately follows from the expressions

for the respective marginal propensities in Observation S1 and Proposition S1.

• That 0
1  

1 under condition (MO) immediately follows from comparing

the respective marginal propensities given in Proposition S1.

• That
1  1 under Assumption S1, equation (2), again immediately follows

from comparison of the respective expressions for marginal propensities in

Observation S1 and Proposition S1.

• By the respective expressions for marginal propensities in Observation S1 and
Proposition S1, the inequality 

2  2 and therefore 

2  2 holds iff

(1−
0)(1−

1)  (1−0)(1−1)

⇔ (001)
1
 + (002)

1


1 + (001)
1
 + (002)

1


· (112)
1


1 + (112)
1





1


01 + 
1


02

1 + 
1


01 + 
1


02


1


12

1 + 
1


12

⇔
µ
112

12

¶ 1



1 + (001)

1
 + (002)

1


1 + 
1


01 + 
1


02

· 
1


01 + 
1


02

(001)
1
 + (002)

1
| {z }

1 by condition (SU)

· 1 + (112)
1


1 + 
1


12| {z }
1 by Assumption S1, equation (2)

(6)

from which condition (SO1) readily follows. To see that the first term on

the RHS of (6) exceeds one under condition (SU), notice that condition (SU)

implies


1


01 + 
1


02

(001)
1
 + (002)

1


 1

⇔ 1 +
1

(001)
1
 + (002)

1


 1 +
1


1


01 + 
1


02

⇔ 
1


01 + 
1


02

1 + 
1


01 + 
1


02

· 1 + (
0
01)

1
 + (002)

1


(001)
1
 + (002)

1


 1

¤

As to the first implication, we require condition (SU) in order for the simple model

to give rise to undersaving. Observe that condition (SU) has a straightforward interpre-

tation for log-utility ( = 1). It can then be rewritten as

0 ≡ 1 + 001 + 002  0 ≡ 1 + 01 + 02

7



i.e., subjective life-expectancy at birth, 0, is less than the respective objective life-

expectancy, 0. The term sufficient underestimation (SU) means that underestimation

of subjective beliefs in period 0, cf. Assumption S1, equation (1), must be sufficiently

strong in order to dominate any overestimation of subjective survival beliefs to occur

eventually. Otherwise the naive CEU agent would (weakly) save more than the RE

agent, given her forward looking behavior.

As to the second implication, we requiremoderate overestimation, cf. condition (MO),

of subjective survival beliefs. In contrast to condition SU, condition MO refers to sur-

vival beliefs formed in period 1 for the probability to survive to period 2. Accordingly,

it restricts 112 by an upper bound which is determined by the ratio of subjective beliefs,
002

001
. That is, only if overestimation is not too large, we can expect model households to

save less than originally planned. Otherwise the naive CEU agent would revise her plan

to (weakly) save more than originally planned.

The third implication states that our assumption on overestimation, cf. Assump-

tion S1, equation (2), immediately gives rise to the implication that the speed of asset

decumulation of the naive CEU agent is less than the speed of decumulation of the RE

agent. This does not, however, imply that period 2 asset holdings of the naive CEU

agent exceed those of the RE agent because the effects of sufficient underestimation

in period 0 and overestimation in period 1 work in opposite directions as far as asset

holdings are concerned.

This observation readily implies that an additional lower bound on the degree of

overestimation is required in order to find that asset holdings in period 2 of the naive

CEU agent exceed those of the RE agent. This is stated as sufficient overestimation

in condition (SO1). Optimism has to be sufficiently strong to dominate the initial

underestimation of survival beliefs. As an interpretation of the lower bound observe that

the lower bound increases if the initial underestimation of survival belief gets stronger,

i.e., if the gap between 01 and 001 increases.

The analysis so far clarifies that it is a quantitative question whether the calibrated

life-cycle model can generate the three empirical regularities on saving behavior: (i) time

inconsistent behavior to the effect that people save less than originally planned (under

“moderate overestimation”); (ii) undersaving at young age (under “sufficient underesti-

mation”); (iii) too high old-age asset holdings (under “sufficient overestimation”).

S.2.3 Sophisticated CEU Agents

Unlike naive agents, sophisticated agents anticipate the correct lifetime utility for all

future selves as additional constraints, i.e., they anticipate that their future selves will

not be acting in their interest. The only way to influence future selves behavior is via the

8



savings decision of current self 0. Thus, sophisticated agents take (over-) consumption

of future selves into account when making their current saving plans.

The solution to the problem of the sophisticated CEU agent is as follows:

Proposition S3. The solution to the sophisticated CEU agent’s problem in period 0

is given by

0 = 
00 =

1

1 +
(Θ0(

1)·001)
1



1

0 (7)

where 
1 = 

1 and 

2 = 

2 = 1 and

Θ0 (

1) ≡

µ

1 +

002

001
1
12

(1−
1)

¶


Θ0 (

1)  1 under condition (MO). The solution for 


0 is given by


0 =

1

1 +
³
1 + (112)

1


´1− 1

³
001 + 002(

1
12)

1

−1
´ 1



 (8)

Proof. In period 2 we obviously have
2 = 

2 . The FOC of the sophisticated agent in

period 1 is the same as for the period 1 naive agent, cf. the proof of Proposition S1.

From this it follows that 
1 = 

1 . In period 0 the first-order condition is given

by



0
= 001Θ0 (


1)



1

⇔ 1
0
=
¡
001Θ0 (


1)
¢ 1


⇔ 0 =
¡
001
¢− 1

 (Θ0 (

1))

− 1
 (0 − 0)


1

⇔ 0 =
1

1 + 1

(Θ0(
1)·001)

− 1


1

0

where

Θ0 (

1) ≡ 

1 +
002

001
1
12

(1−
1)

We obviously get that

Θ0 (

1)  1 ⇔ 002

001
1
12

 1

The latter term is condition (MO).
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To derive 
0 start from

Θ0 (

1) 

0
01 =

µ

1 +

002

001
1
12

(1−
1)

¶
001

= 
1
0
01 +

002

112
(1−

1)

=
1

1 + (112)
1


001 +
002

112

(112)
1


1 + (112)
1


=
001 + 002(

1
12)

1

−1

1 + (112)
1




therefore

¡
Θ0 (


1) 

0
01

¢− 1
 

1 =

Ã
001 + 002(

1
12)

1

−1

1 + (112)
1


!− 1


1

1 + (112)
1


=

³
001 + 002(

1
12)

1

−1
´− 1



³
1 + (112)

1


´1− 1


and

1 +
1¡

Θ0 (

1) 

0
01

¢− 1
 

1

= 1 +

³
1 + (112)

1


´1− 1


³
001 + 002(

1
12)

1

−1
´− 1



=

³
001 + 002(

1
12)

1

−1
´− 1



+
³
1 + (112)

1


´1− 1


³
001 + 002(

1
12)

1

−1
´− 1





Using the above in (7) gives (8). ¤

This shows that the solution to the sophisticated agent’s problem in terms of policy

functions (i.e., in terms of marginal propensities to consume) is identical to the naive

agent in periods 1 and 2. This is due to the fact that the marginal propensity in period

2 is known to be 
2 = 

2 = 1 for all types. Consequently, Θ1(

2) = 1 and therefore

also 
1 = 

1 .

As Θ0(

1)  1 under “moderate overestimation”, cf. condition (MO), we find

that condition (MO) leads to a higher growth rate of marginal utilities of sophisticates

compared to naifs, implying that consumption growth increases. Θ0 (

1)  1 reflects

the sophisticated agent’s high valuation of savings. At the same time, Θ0 (

1) depends
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negatively on the MPC of the future self 1, 
1, implying that self 0’s propensity to save

decreases when future self 1’s MPC increases. Yet, these statements refer only to the

change of consumption over time. The level of consumption of sophisticates in period 0

of course also depends negatively on 
1. The higher is 


1 the higher will be 


0 for

reasons of consumption smoothing. Hence, whether 0 is lower than 

0 depends on these

offsetting forces. The next proposition makes this explicit:

Proposition S4. Define Ξ as

Ξ ≡

³
1 + (112)

1


´1− 1

³
001 + 002(

1
12)

1

−1
´ 1



(001)
1
 + (002)

1




We have

Ξ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 1 ⇔ 

0  
0 


0  0 


1  1 


2  2

 1 ⇔ 
0  

0 

0  0 


1  1 


2  2

= 1 if  = 1 ⇔ 
0 = 

0 

0 = 1 


1 = 1 


2 = 2

Proof. Observe from Propositions 5 and 7 that


0 ≥ 

0

⇔ 1

1 + (001)
1
 + (002)

1


≥ 1

1 +
³
1 + (112)

1


´1− 1

³
001 + 002(

1
12)

1

−1
´ 1



⇔
³
1 + (112)

1


´1− 1

³
001 + 002(

1
12)

1

−1
´ 1

 ≥ (001)
1
 + (002)

1


⇔ Ξ ≡

³
1 + (112)

1


´1− 1

³
001 + 002(

1
12)

1

−1
´ 1



(001)
1
 + (002)

1


≥ 1

We readily observe from Ξ = 1 ⇔ 
0 = 

0 for  = 1 (in which case 
1
12 does

not influence the consumption decision of sophisticates in period 0). Furthermore,

if 
0  

0 , then 
1  

1 . Given that the consumption growth rate between

periods 1 and 2 of the two agents is identical and given that they both consume

the same present value of life-time resources, 0, this also implies that 

1  1

and 2  2 and vice versa for 

0  

0 . ¤

It would be desirable to further make statements about how Ξ varies with . To ap-

proach this, observe from Proposition S1 that an increase of  decreases 
0 . This is due

to the desire for consumption smoothing: increasing  (decreasing the IES) increases the

11



consumption growth rate which increases savings and reduces the marginal propensity to

consume today. For the sophisticated agent the analogous effects are at work but there

is an important (at least partially) offsetting one. This is easiest to see by inspection of

equation (7) in Proposition S3. We assume for the remainder of the analysis that condi-

tion (MO) holds to the effect that Θ0(

1)  1. First, increasing  reduces 


1. As seen

from Proposition S3 this reduces 
0. Second, increasing  also increases (

0
01)

1
 which

also contributes to a reduction of 
0. Third, increasing  also indirectly affects Θ0(


1):

by decreasing 
1, Θ0(


1) goes up. As Θ0(


1)  1–by condition (MO)–this effect

further contributes to a reduction of 
0. Finally, however, notice that there is a direct

effect of increases in  via term Θ0(

1)

1
 . Under condition (MO) the derivative of this

term with respect to  is negative. It is given by − 1

2
ln (Θ0(


1))Θ0(


1)

1
 . Hence, hold-

ing Θ0(

1) constant this partially offsetting effect is particularly strong for low values

of  (and weak for high values of ). The effect is also strong when 112 is low because

then 
1 is low. We can therefore expect that

Ξ


 0 if 112 exceeds some critical value.

The next sufficient condition establishes this locally at  = 1:

Proposition S5. Ξ


¯̄
=1

 0 if

112  001 + 002 − 1 (9)

Proof. Ξ

has the same sign as  lnΞ


. We get

lnΞ =

µ
1− 1



¶
ln
³
1 + (112)

1


´
+
1


ln
³
001 + 002(

1
12)

1

−1
´
− ln

³
(001)

1
 + (002)

1


´
= Ξ1 + Ξ2 + Ξ3

We find

Ξ1


=
1

2
ln
³
1 + (112)

1


´
− 1

2

µ
1− 1



¶
ln(112)(

1
12)

1


1 + (112)
1


 0 if  ≥ 1 (10)

Ξ2


= − 1

2
ln
³
001 + 002(

1
12)

1

−1
´
− 1

3
002 ln(

1
12)(

1
12)

1

−1

001 + 002(
1
12)

1

−1| {z }

0

(11)

Ξ3


= − 1

2
ln(001)(

0
01)

1
 + ln(002)(

0
02)

1


(001)
1
 + (002)

1


 0 (12)

Hence, for  ≥ 1 any ambiguity in the sign of Ξ

can only come from the first term

in the derivative (11). For  = 1, the term is obviously positive (so that the overall

derivative is positive) if 001 + 002  1. For the other case, i.e., for 
0
01 + 002 ≥ 1,

we get by comparing for  = 1 the first term in (10) with the first term in (11) the

sufficient condition. ¤
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Figures S.1 and S.2 present an illustration for a calibrated version of the simple

model. For simplicity, we consider a static model here and choose 1 = 2 = 05. We also

set  = 05, 01 = 1 and 12 = 025. We consider  ∈ {05 15}. This parametrization
is such that Assumption S1 holds. It also gives rise to conditions (MO), (SU), (SO1) and

(9). The figures confirm the findings from the previous propositions. Importantly, the

relative consumption patterns between RE and CEU households displayed in Figure S.1

and the differences between sophisticates and naifs shown in Panel (a) of Figure S.2

correspond to our findings in the quantitative model (which also features a relatively

low IES), cf. Figure 7 in the paper.

Figure S.1: Consumption

(a)  = 15 (b)  = 05
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Notes: Consumption for different values of .

Figure S.2: Difference in Consumption: Naives & Sophisticates

(a)  = 15 (b)  = 05
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Notes: Difference in consumption between naifs and sophisticates for different values of .
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S.3 Additional Results

Objective Survival Rates

Figure S.3: Mortality Rates: Data vs. Estimation
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Notes: Average mortality rates from 2000-2010 using HMD data (red solid line) and predicted mortality

rates (black dashed line) using the logistic frailty model given in (36) in the paper. Parameter estimates

are provided in Table 1 in the paper.
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