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Abstract

In the presence of heteroskedasticity, conventional standard errors (which assume
homoskedasticity) can be biased up or down. The most common form of het-
eroskedasticity leads to conventional standard errors that are too small. When
Wald tests based on these standard errors are insignificant, heteroskedasticity ro-
bust standard errors do not change inference. On the other hand, inference is con-
servative in a setting with upward-biased conventional standard errors. We discuss
the power gains when using robust standard errors in this case and also potential
problems of heteroskedasticity tests. As a solution for the poor performance of the
usual heteroskedasticity tests in this setting, we propose a modification of the White
test which has better properties. We illustrate our findings using a study in labor
economics. The correct standard errors turn out to be around 15 percent lower,
leading to different policy conclusions. Moreover, only our modified test is able to
detect heteroskedasticity in this application.

1. Introduction

In the June 2011 issue of the American Economic Review, Vikesh Amin commented on

an article by Dorothe Bonjour et al. published in December 2003 also in the American

Economic Review. Bonjour et al. (2003) estimated the private return to education using

a dataset containing 428 female monozygotic twins from the United Kingdom. One of

their main findings was an estimated return to one additional year of education of 7.7

percent, which is statistically significant at the 5 percent level. Amin (2011) replicated

their results and performed similar estimations where he excluded outliers. He found that

many of Bonjour et al.’s within-twin pair estimates became smaller in magnitude and

significant only at lower levels or insignificant when removing these extreme values.
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In this study we show that the inference for the within-twin pair regressions in Amin

(2011) is mostly incorrect due to the presence of a special form of heteroskedasticity,

which we describe in Section 2. In contrast to Amin (2011), we find a significant positive

return to education at conventional levels for most of his within-twin pair regressions. The

majority of these regressions therefore support the conclusion in Bonjour et al. (2003) of

a positive return to education that is significantly different from zero. In Section 2 we

provide a theoretical background for the situation when an upward bias in conventional

standard errors occurs. There we also discuss the difficulties in using the standard tests for

heteroskedasticity to detect the form of heteroskedasticity relevant for this study. We then

propose a variant of the White test which we develop specifically for detecting this kind

of heteroskedasticity. Section 3 presents the results of a series of Monte Carlo simulations

based on data exhibiting this special form of heteroskedasticity. In these simulations, we

compare the power and size of the usual Wald tests in regressions using conventional and

robust standard errors. In addition, we examine the power and size of three different tests

for heteroskedasticity. In the main part, Section 4, we use the three test procedures to test

for heteroskedasticity in Bonjour et al.’s dataset. The Koenker variant of the Breusch–

Pagan test and the White test do not reject the hypothesis of homoskedasticity, which is

as expected, due to the special form of heteroskedasticity present. However, our specific

White test which we discuss in Section 2 rejects, at conventional significance levels, the

null hypothesis, in favor of the special form of heteroskedasticity. Also in Section 4, we

present our replication of the within-twin pair regressions in Table 1 of Amin (2011) and

our re-estimated results using the appropriate standard errors.

2. Inference problems

In the presence of heteroskedasticity, conventional standard errors (which assume ho-

moskedasticity) can be biased up or down. The most common form of heteroskedasticity,

where the residual variance rises in increasing regressor values, usually leads to conven-

tional standard errors that are too small. When Wald tests based on these standard

errors are insignificant, heteroskedasticity robust standard errors do not change inference.

On the other hand, inference is conservative in a setting with upward-biased conventional

standard errors. Angrist and Pischke (2010) derive the condition for such an upward bias.

In this setting heteroskedasticity robust standard errors are not only size-correct but also
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lead to power gains compared to the conventional standard errors.

Consider the classical bivariate linear regression model1

yi = α + βxi + ei

where the true sampling variance for the estimator β̂ can be written as

σ2
β̂

=
1

n

V ar[ei(xi − x̄)]

V ar[xi]2
.

Under the assumption of homoskedasticity, the equation simplifies to the conventional

standard error

[σ2
β̂
]conv =

1

n

σ2
e

V ar[xi]
.

Thus,

[σ2
β̂
]conv > σ2

β̂
⇐⇒ σ2

e >
V ar[ei(xi − x̄)]

V ar[xi]
.

Since

V ar[ei(xi − x̄)] = E[e2
i (xi − x̄)2]

= E[e2
i ]E[(xi − x̄)2] + Cov[e2

i , (xi − x̄)2]

= σ2
eV ar[xi] + Cov[e2

i , (xi − x̄)2],

the inequality can be rewritten as

[σ2
β̂
]conv > σ2

β̂
⇐⇒ Cov[e2

i , (xi − x̄)2] < 0.

An upward bias in conventional standard errors occurs if there is a negative covariance

between the squared residual e2
i and the squared deviation of xi from its mean x̄. The

further away the observation xi is from x̄, the smaller becomes V ar[ei|xi] = E[e2
i |xi], the

conditional variance of residual ei.
2

1A similar insight can be derived in the multivariate regression model by partialling out all other
covariates.

2In his blog, Chris Auld gives an intuition for why conventional standard errors are biased up in
the situation described above. As the error variance does not remain constant under this special
form of heteroskedasticity but rather decreases for larger deviations of xi from x̄, observations fur-
ther away from x̄ provide more information for the estimation of σ2

β̂
than is actually assumed un-

der homoskedasticity. Hence, conventional standard errors are larger than the true sampling variance.
http://chrisauld.com/2012/10/31/the-intuition-of-robust-standard-errors/ .
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When Cov[e2
i , (xi− x̄)2] < 0, the corresponding scatter plot of ei on the regressor xi often

resembles an ellipse. That is why we refer to this form of heteroskedasticity as elliptical

heteroskedasticity. Figure 1 illustrates the elliptical shape of the residuals based on sim-

ulated data exhibiting elliptical heteroskedasticity.

A reverse ‘U’-shaped relation between the squared residual e2
i and the regressor xi often

occurs when elliptical heteroskedasticity is present. Hence, statistical procedures testing

for linear forms of heteroskedasticity based on e2
i as the dependent variable usually fail to

detect elliptical heteroskedasticity. Figure 2 illustrates how the linear regression line from

the regression of e2
i on xi is close to zero, as the squared residuals first rise and then fall

in an increasing xi. Therefore, tests such as the Breusch–Pagan (1979) test with xi as the

only independent variable included usually do not reject the hypothesis of homoskedastic-

ity. Furthermore, more general tests, e.g., the White (1980) test, to detect also non-linear

heteroskedasticity, do not give information about the form of heteroskedasticity that is

present. This is because such test procedures test the null hypothesis of homoskedasticity

against the unspecific alternative of no homoskedasticity. Moreover, due to their open

formulation of null and alternative hypothesis, more general tests can possess a lower

power in detecting elliptical heteroskedasticity.

To be able to test specifically for the kind of heteroskedasticity in which our interest lies,

we developed a variant of the White test, which we call specific White test.

In the bivariate regression model, the test procedure for the standard White test is as

follows. The squared residuals e2
i are obtained from the regression of yi on xi. Then

the test statistic nR2 is calculated by multiplying the number of observations, n, by R

squared in the regression

e2
i = γ0 + γ1xi + γ2x

2
i + ηi.

In the case of one regressor, nR2 is asymptotically χ2 distributed with two degrees of

freedom. The decision rule for the rejection of H0 is, as usual, based on this test statistic.

The null hypothesis is H0: homoskedasticity and the alternative hypothesis is Ha: het-

eroskedasticity.

To derive our specific White test, consider the regression

e2
i = δ0 + δ1(xi − x̄)2 + ξi.
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Expanding the equation yields

e2
i = δ0 + δ1x̄

2 − 2x̄δ1xi + δ1x
2
i + ξi

This is the same regression equation on which is based the standard White test, in the

bivariate regression model with γ0 = δ0 + δ1x̄
2, γ1 = −2x̄δ1 and γ1 = δ1.

Under elliptical heteroskedasticity, we know that Cov[e2
i , (xi − x̄)2] < 0 and therefore

δ1 = γ1 =
Cov[e2

i , (xi − x̄)2]

V ar[(xi − x̄)2]
< 0 .

Hence, by exploiting this knowledge we can alter the standard White test statistic to test

specifically for elliptical heteroskedasticity.

Our specific White test conducts a one-sided Wald test for H0 : γ1 ≥ 0 against Ha :

γ1 < 0 in the regression e2
i = γ0 + γ1xi + γ2x

2
i + ηi. The hypotheses are H0: no elliptical

heteroskedasticity and Ha: elliptical heteroskedasticity.

Furthermore, if the data exhibit elliptical heteroskedasticity, the usual Wald tests for

hypotheses about the slope parameter β in the OLS regression of yi on xi using the

conventional standard error give an actual size smaller than the desired type I error. As

a result, policy conclusions based on estimates using conventional standard errors are

conservative. In contrast, robust standard errors yield the correct size and valid policy

conclusions.

3. Monte Carlo Simulations

To illustrate the issues arising from elliptical heteroskedasticity described in Section 2, we

run a series of Monte Carlo simulations.

The design of our Monte Carlo simulations is based on the following data generating
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process.

yi = 0.04xi + ei

ei =

√
1

{(xi − x̄)2 + 0.1}a
εi

xi = [x∗i ], x
∗
i ∼ N(0.04, 1.82), εi ∼ N(0, 1),

a = 0, 0.05, 0.1, 0.15, . . . , 0.5

We chose the model so that the shape of the resulting y–x scatter plot resembles Panel

A, Figure 1 in Amin (2011). For values of a between 0.15 and 0.3, the y–x scatter plot is

most similar to Panel A. The operator [.] rounds x∗i to the nearest integer. Hence, xi is

an integer, just as the within-twin difference in estimated years of schooling in Bonjour et

al. (2003). Furthermore, also in accordance with the within-twin difference in estimated

years of schooling, the values of xi are centered around the mean x̄. The structure of the

error term ei implies that Cov[e2
i , (xi − x̄)2] < 0 if a > 0. The larger is the parameter a,

the more negative is the covariance between e2
i and (xi − x̄)2, and therefore the stronger

is the upward bias caused by elliptical heteroskedasticity. For a = 0, the error term is

homoskedastic. The number of observations is set to N = 214, as in the original dataset,

and the number of replications is 10,000.

In each simulation, we evaluate the size and power of three different tests for heteroskedas-

ticity: the Koenker (1981) variant of the Breusch–Pagan test, which drops the assumption

of normality, with x as the independent variable, the White test, and our specific White

test introduced in Section 2. In addition, we compare the power and size for the parame-

ter of interest in the causal model using Wald tests for the hypotheses H0 : β = k against

Ha : β 6= k where k ∈ 0, 0.01, 0.02, . . . , 0.5 in the regression of yi on xi using robust and

conventional standard errors.

Figure 3 shows power plots for the heteroskedasticity tests. The simulation with a = 0

gives the size of each test. While the rejection frequency of the Breusch–Pagan and stan-

dard White test is close to the given significance level of α = 5%, the actual size of the

specific White test is above this value, with 11.5%. However, we find that the actual

test size for the latter test approaches the theoretically given significance level for larger

numbers of observations. For example, running an analogous simulation with N = 2, 140
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(21, 400) yields an actual size of 7.6% (6.1%) for the specific White test.

For a > 0, Figure 3 displays the power of each test. The rejection frequency of the White

test and our specific White test increases with stronger elliptical heteroskedasticity, i.e.,

with increasing values of a. Compared to the specific White test, the standard White

test performs worse in detecting heteroskedasticity, although the difference in power gets

smaller for larger values of a. At a = 0.15, the specific White test rejects H0 about 75%

of the time, while the standard White test has a rejection frequency of about 20%. At

a = 0.3, our specific White test has a power of about 99% while the standard White test

rejects H0 roughly eight out of ten times. As mentioned before, in contrast to the specific

White test, the standard White test does not have elliptical heteroskedasticity as the al-

ternative hypothesis, but rather heteroskedasticity in general, which may explain its worse

performance. The Breusch–Pagan test has considerably smaller rejection frequencies than

the two other tests throughout the whole range of a > 0. It does not reach a power of

4% for any given positive value of a. This result is related to the fact that the basic

specification of the Breusch–Pagan test is for detecting linear forms of heteroskedasticity.

Figure 4 displays the power and size of the Wald tests withH0 : β = k, k ∈ 0, 0.01, 0.02, . . . , 0.5

for different values of a using conventional and robust standard errors. The actual size of

the tests is given at H0 : β = 0.04. Under homoskedasticity, a = 0, both test versions’

sizes are close to the given significance level of 5%. In the presence of heteroskedasticity,

a > 0, the Wald tests using robust standard errors yield also a size around 5%. The size

of the Wald tests using conventional standard errors, however, decreases with increasing

a: from 5.7% at a = 0 to 0.1% at a = 0.5. Hence, t tests with conventional standard

errors do not reject the correct null hypothesis often enough for a > 0. This is due to the

upward bias in conventional standard errors in this case.

For H0 : β 6= 0.04, Figure 4 shows graphically the power of the Wald tests. At a = 0, the

power curves of both tests are almost the same. However, an ever increasing gap between

them arises as a gets larger. The Wald test using robust standard errors becomes more

powerful whereas the test using conventional standard errors loses power. The loss in

power can be attributed to the increasing upward bias in conventional standard errors for

rising values of a > 0. As expected, the tests’ power gets larger the further away the null

hypothesis is from the true parameter β = 0.04.

The same conclusions can be drawn from Figure 5. It displays the power curves of the
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Wald tests in three dimensional space, where the x-axis corresponds to the exponent a

and the y-axis specifies the hypothesis about the true parameter β. The decreasing power

and size of the Wald tests using conventional standard errors can be seen by the fact

that the object in the left-hand side panel is tilted to the right. The right-hand side panel

shows an increase in power of the Wald tests using robust standard errors for larger values

of a, as the three dimensional power curve is tilted to the left. Using robust instead of

conventional standard errors thus implies a power gain for the Wald tests. The valley of

both objects runs along the correctly specified hypothesis at H0 : β = 0.04.

4. Re-Estimation of Within-Twin Pair Regressions

Amin (2011) excluded up to four twin pair outliers. These were determined on the basis

of the absolute between-twin difference in hourly wages. Figure 1, Panels A and B, in

Amin (2011) illustrates which data points he removed. However, we noticed that outlier

number 2 in Panel B does not correspond to the data point labelled 2 in Panel A. Figure

5 shows that observation number 2 is actually the data point with a difference in log

hourly wages of approximately −2 instead of the point at approximately −3. Despite this

graphical error, the correct observations were removed in his analysis.

The left-hand side panel in Figure 5 suggests that the data exhibit the elliptical het-

eroskedasticity discussed in Section 2, which leads to an upward bias in conventional

standard errors. In order to test for the presence of heteroskedasticity, we performed the

three tests outlined in Section 2 for all within-twin pair OLS and IV regressions in columns

3, 4 and 7, 8 of Table 1 in Amin (2011). In all regressions, the dependent variable is the

within-twin difference in log hourly wages. The regressor of interest is the within-twin

difference in self-reported education. In the IV regressions, this variable is instrumented

by the within-twin difference in the co-twin’s report of the other twin’s education. The

regressions in column (7) and (8) include the covariates within-twin difference in marital

status, current job tenure, part-time status, and whether a person lives in London or the

south-east of the UK.

Table I provides the p-values for the Koenker variant of the Breusch–Pagan test with

within-twin difference in estimated years of schooling as the only independent variable,

the standard White test, and our proposed specific White test from Section 2. In the re-
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gressions including covariates, we partialled them out before testing. The specific White

test rejects H0: no elliptical heteroskedasticity in favour of Ha: elliptical heteroskedasticity

for all regression specifications at least at the 10% level. In contrast, the Breusch–Pagan

and the standard White test do not reject the hypothesis of homoskedasticity in any re-

gression. This can be attributed to the difficulties and lower power in detecting elliptical

heteroskedasticity when using more general tests discussed in Section 2. Based on our

proposed specific White test, there is evidence for the presence of elliptical heteroskedas-

ticity in the data. Hence, conventional standard errors are incorrect and may lead to false

policy conclusions. Instead, robust standard errors should be used for the calculation of

test statistics.

Table II shows our replication results for the within-twin pair regressions in Table 1, Amin

(2011). We use the dataset from the online appendix for Bonjour et al. (2003) that was

also used by Amin. Our replication results for the regressions based on the full sample are

the same as the ones by Amin (2011). These regressions were also performed by Bonjour

et al. (2003).3 Our replication results for the regressions using the restricted samples

are very similar to the estimates in Amin (2011). In addition to the replications using

conventional standard errors, Table II reports robust standard error estimates and the

corresponding significance levels.

In all but two regressions, the robust standard error is smaller than the conventional one.4

This result is in line with the suspicion that elliptical heteroskedasticity is present in the

data, which causes an upward bias in conventional standard errors. It also supports the

conclusions from our specific White test.

In many regressions where the parameter of interest is insignificant using conventional

standard errors, it becomes significant at the 5% or 10% level when using robust stan-

dard errors. With conventional standard errors, 13 out of the 20 regressions yield an

insignificant parameter estimate. In contrast, only in three out of the 20 regressions do

we fail to find a return to education significantly different from zero when using robust

3However, we find the parameter estimate of interest for the OLS regression without covariates using
the full sample, in column (3), to be significant at the 10% level instead of insignificant, as stated
incorrectly in Amin (2011). This is because 0.039

0.023 = 1.696 > 1.645. Our conclusion remains valid when
the values are rounded to more than three decimals. Bonjour et al. (2003) do not indicate significance
at the 10% level.

4In the pooled OLS and IV regressions in Table 1, Amin (2011), robust standard errors are slightly
larger than the conventional ones. Nevertheless, all point estimates remain highly significant at the 1%
level.
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standard errors. In particular, all point estimates based on the full sample as well as

the sample excluding observations with an absolute wage difference of more than 90 and

75, respectively, are significant at the usual levels. Regarding the regressions based on

samples with three or four outliers removed (row 3 and 4), three more estimates turn

significant at least at the 10% level when using robust standard errors compared to the

results using conventional standard errors. One of the main findings in Bonjour et al.

(2003), a return to education of 7.7 percent (column (4)), remains significant at the 10%

level after the exclusion of outliers with an absolute wage difference larger than 90 and 75,

when using robust standard errors. However, dropping further observations causes the

parameter estimate of interest to become insignificant even with robust standard errors.

This is the same result as in Amin (2011), who used conventional standard errors.5

The point estimates for the parameter of interest generally decrease with the number

of outliers removed. For example, after excluding all four extreme values, β̂ falls from

originally 0.082 to 0.041 in the IV regression with covariates (column (8)). Under con-

ventional standard errors this effect and many other estimates are insignificant at the

10% level. Therefore, the conclusion in the case of conventional standard errors would

falsely be that the return to education is not significantly different from zero. However,

when using robust standard errors, which need to be used due to the presence of elliptical

heteroskedasticity, most of these insignificant effects are significant at conventional levels.

Thus, the correct conclusion based on the vast majority of regressions in Table II is that

there is a positive return to education which is significant at conventional levels.

5. Conclusion

Bonjour et al. (2003) estimated the private returns to education using a sample of 428

female monozygotic twins from the UK. Most of their regression specifications yielded

a positive return to one additional year of education, significant at conventional levels.

Amin (2011) re-estimated their regressions but excluding up to four outliers from the

dataset. By doing so, he found that many of Bonjour et al.’s within-twin pair estimates

became smaller in magnitude and either insignificant or significant only at lower levels.

In this study we show that the inference for the within-twin pair regressions in Amin

(2011) is mostly incorrect, due to a special non-linear form of heteroskedasticity present

5Although the IV regression based on the sample with outlier 1 removed is significant at the 10% level
in Amin (2011) (row 2, column(4)), our corresponding estimate is insignificant at the 10% level
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in the data. This special form of heteroskedasticity, referred to by us as elliptical het-

eroskedasticity, causes an upward bias in conventional standard errors, which are used by

Amin (2011).

With the help of three tests for heteroskedasticity, we tested for the presence of ellipti-

cal heteroskedasticity. A basic variant of the Breusch–Pagan test, which is only able to

detect linear forms of heteroskedasticity, and the standard White test, which can also

detect non-linear heteroskedasticity, do not reject the null hypothesis of homoskedastic-

ity for any regression. This is as expected, since the former procedure cannot detect

non-linear heteroskedasticity and the latter test has often low power under this type of

heteroskedasticity. However, our specific White test, developed for testing for elliptical

heteroskedasticity, rejects the null hypothesis of no elliptical heteroskedasticity in favour

of the alternative hypothesis elliptical heteroskedasticity for most regressions and sam-

ples. Our Monte Carlo simulations assessing the size and power of the three tests for

heteroskedasticity confirm the problems in detecting elliptical heteroskedasticity with the

usual tests and demonstrate the superiority of our own test.

We obtain the correct inference for the within-twin pair regressions in Amin (2011) by

re-estimating these regressions using robust instead of conventional standard errors. In

contrast to Amin (2011), we found a positive return to education, significant at conven-

tional levels, for most of his within-twin pair regressions. For example, the IV regression

including covariates based on the sample with all outliers removed yields an estimated

return to education of 4.1 percent. The estimate is significant at the 10% level using

robust standard errors as opposed to insignificant under conventional ones. However, our

result for the favoured regression specification in Bonjour et al. (2003) is similar to Amin

(2011). Removing outliers with an absolute wage difference of 90 and 75, respectively,

leads to a decrease in the return to education from 7.7 percent to 5 percent. The latter

estimate is significant at the 10% level. In summary, we come to the conclusion that most

within-twin pair regressions in Amin (2011) support the notion of a significant positive

return to education, although smaller than the results obtained by Bonjour et al. (2003).
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Table I. Tests for Heteroskedasticity Based on Within-Twin Pair Regressions in Table 1,
Amin (2011)

Within-twin pair Within-twin pair
with covariates

OLS IV OLS IV

(3) (4) (7) (8)
Sample

Full Bonjour et
al. dataset

Breusch–Pagan Test 0.3645 0.3124 0.6090 0.5435
White Test 0.4805 0.4581 0.5300 0.5603
Specific White Test 0.0257 0.0691 0.0129 0.0391

Drop if abs. wage
difference > 90

Breusch–Pagan Test 0.7221 0.6719 0.8713 0.8276
White Test 0.4982 0.4906 0.5451 0.5491
Specific White Test 0.0105 0.0122 0.0219 0.0247

Drop if abs. wage
difference > 75

Breusch–Pagan Test 0.7207 0.6737 0.7799 0.7437
White Test 0.5488 0.5421 0.6034 0.6075
Specific White Test 0.0171 0.0198 0.0389 0.0455

Drop if abs. wage
difference > 65

Breusch–Pagan Test 0.7143 0.7065 0.8136 0.8126
White Test 0.6147 0.6101 0.6562 0.6559
Specific White Test 0.0294 0.0292 0.0518 0.0518

Drop if abs. wage
difference > 60

Breusch–Pagan Test 0.9861 0.9466 0.8177 0.8014
White Test 0.6310 0.6237 0.7247 0.7194
Specific White Test 0.0572 0.0549 0.0948 0.0948

Table reports p values. For more details on the tests, see Section 2.
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Table II. Replication and Re-Estimation Using Robust Standard Errors of Within-Twin
Pair Regressions in Table 1, Amin(2011)

Within-twin pair Within-twin pair
with covariates

OLS IV OLS IV

(3) (4) (7) (8)
Sample

Full Bonjour et
al.dataset

β̂education 0.039 0.077 0.039 0.082
Conventional SE (0.023)* (0.033)** (0.024) (0.036)**
Robust SE (0.018)** (0.039)** (0.018)** (0.043)*

Drop if abs. wage
difference > 90

β̂education 0.032 0.050 0.034 0.053
Conventional SE (0.021) (0.031) (0.023) (0.033)
Robust SE (0.016)** (0.027)* (0.017)** (0.030)*

Drop if abs. wage
difference > 75

β̂education 0.032 0.050 0.036 0.055
Conventional SE (0.021) (0.030)* (0.022) (0.032)*
Robust SE (0.016)** (0.027)* (0.017)** (0.030)*

Drop if abs. wage
difference > 65

β̂education 0.032 0.036 0.036 0.039
Conventional SE (0.020) (0.029) (0.021)* (0.031)
Robust SE (0.016)** (0.022) (0.017)** (0.024)

Drop if abs. wage
difference > 60

β̂education 0.028 0.036 0.036 0.041
Conventional SE (0.019) (0.027) (0.019)* (0.028)
Robust SE (0.016)* (0.022) (0.016)** (0.023)*

*** Significant at the 1% level

** Significant at the 5% level

* Significant at the 10% level
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Figure 1. Scatter Plot Illustrating Elliptical Heteroskedasticity

Graph shows simulated data based on the data generating process in Section 3. N = 250; a = 0.2.
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Figure 2. Regression of Squared Residuals on x

Graph shows simulated data based on the data generating process in Section 3. N = 2140; a = 0.25.
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Figure 3. Power Plots for Heteroskedasticity Tests

N = 214; 10, 000 replications; a = 0: homoskedasticity; a > 0: elliptical heteroskedasticity. Breusch–Pagan and White Test:
Rejection frequencies for H0 : Homoskedasticity and Ha : Heteroskedasticity; Specific White Test: Rejection frequencies
for H0: No elliptical heteroskedasticity and Ha: Elliptical heteroskedasticity, α = 5% .
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Figure 4. Power Plots for Wald Tests Using Conventional and Robust Standard
Errors

N = 214; 10, 000 replications; β = 0.04; a = 0: homoskedasticity; a > 0: elliptical heteroskedasticity. Rejection
frequencies for H0 : β = k, k ∈ 0, 0.1, 0.2, . . . , 0.5 using Wald tests with conventional and robust standard errors;
α = 0.05.
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Figure 5. Three Dimensional Power Plot for Wald Tests Using Conventional and Robust
Standard Errors

N = 214; 10, 000 replications; β = 0.04; a = 0: homoskedasticity; a > 0: elliptical heteroskedasticity. Rejection frequencies
for H0 : β = k, k ∈ 0, 0.1, 0.2, . . . , 0.5 using Wald tests with conventional and robust standard errors; α = 0.05.
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Figure 6. Replication of Figure 1, Amin (2011)
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