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Abstract

In this paper we analyze asymmetric information in the (private) disability insurance, which has not

been analyzed before in the literature, but covers one of the most important risks faced by individuals in

modern society, namely the loss of human capital. We show that there is asymmetric information, but

the extent depends on the amount of coverage. Moreover, the option of choosing an annual adjustment

of the insured sum has strong predictive power both for the occurrence of an accident and the chosen

coverage, although it should be irrelevant from the point of theory. This result shows new ways to

design contracts and variable selection for risk classification. In contrast to most previous studies, we

also explicitly take into consideration unobserved heterogeneity by applying finite mixture models and

so called ‘unused’ observables.
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1 Introduction

Asymmetric information is an important phenomenon in many markets and in particular in

insurance markets. Testing for asymmetric information has become a very important issue in

the literature over the last two decades, since it allows for testing theoretical predictions and

of outlining new directions for research.1 Two shortcomings are currently still present in this

emerging field: One is that many branches of insurance have not been analysed yet, although

recent studies show that there is no general answer as to whether there is asymmetric infor-

mation in insurance markets or not. It depends on the insurance, or risk, under consideration,

and on the institutional and contractual design. The second shortcoming relates to the test

strategy. DeMeza and Webb (2001) show that if insurees differ in risk aversion (preferences)

and if risk averse individuals are, e.g., more cautious, then selection on preferences might

superpose the selection on the risk type and this might lead to a reduction in the strength of

the positive correlation between risk and coverage.2 Therefore, the results of zero correlation

must be interpreted with caution.

In this paper we present the first results for the accident (disability) insurance, which—as

far as we know—has never been analyzed in the literature, although this kind of insurance

covers risks which are really essential. As we will argue later, this kind of insurance is also

suitable for testing for adverse selection under the assumption that moral hazard is of minor

importance in this market. As the employed data set is new in the literature and proprietary,

we give detailed descriptive statistics which might be interesting for the reader in itself.

In our analysis, we try to control for heterogeneity, e.g., differences in risk aversion, by

applying finite mixture models and so called ‘unused’ observables, which are presented in

Section 6.4 and 6.3, respectively.3 As mentioned above, asymmetric information with respect

to several characteristics, e.g., risk and risk preferences, might dilute the positive correlation

property. Therefore, finite mixture models are an appropriate instrument for detecting dif-

ferent types of individuals that are similar in their behavior. As a by byproduct, we will also

see how different test procedures differ in their results when applied to real data.

We find that the option of choosing an automatic annual adjustment of the coverage

is strongly correlated with both the level of coverage and the probability of suffering an

accident. It is surprising that the choice of such an option, which from a theoretical point of

1Cohen and Siegelman (2010) give a survey of recent developments in this field.
2Chiappori and Salanié (2012) point out that such an ‘advantageous’ selection can lead (under certain

conditions) only to a zero or still positive correlation in equilibrium in competitive markets but not to the
negative correlation which is frequently postulated in the literature.

3Unused observables have been introduced in a seminal article by Finkelstein and Poterba (2006). Gan et
al. (2011) use finite mixture models for testing for asymmetric information in insurance markets.
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view should be unimportant and could also be achieved by annual renegotiation, can contain

valuable information about the accident probability of an individual. This example shows that

variables that, at first sight, seem irrelevant, can contain useful information which might help

insurance companies mitigate the problem of asymmetric information. The option of annual

adjustment, as many other variables, is not used for risk classification. Our study stresses that

in the future, such irrelevant variables should also be considered for risk classification, and in

the design of contracts there might also be reconsidered the selection of collected variables.

The private disability insurance which is analyzed in our paper covers three eventualities:

death, invalidity and a hospital per diem. As the main reason for buying this kind of insurance

is the coverage of invalidity and as this is by far the most important risk covered, we restrict

our analysis to the disability component.

The paper is structured as follows: Section 2 discusses related literature and Section 3

explains in detail the institutional context of the accident / disability insurance in Germany.

Section 4 presents the data set and extensive summary statistics which might of interest in

itself. In Section 5 we present some insight into the testing principles and in Section 6 the

econometric methods and results. Finally, Section 7 concludes.

2 Related Literature and Our Contribution

Contract theory has shown that asymmetric information can affect the efficiency of insurance

markets. Therefore, testing for the existence of asymmetries in different markets has been key.

But even though contract theory has a long tradition in the literature, its empirical counter-

part is relatively new. Cohen and Siegelman (2010) give a recent and comprehensive survey

over empirical studies in this field. One important lesson learned is that the results cannot

be transferred between different markets and that the existence of asymmetric information

depends on the exact risk covered.

Our first contribution is that we give a detailed analysis of the disability insurance which

—as far as we know— has not yet been analyzed in the literature. The disability insurance

is closely related to health insurance. Whereas health insurance covers the costs for the

immediate medical treatment after an accident, disability insurance covers the long–run costs

associated with severe accidents, namely disability and the associated loss of capacity to work.

For asymmetric information in health insurance a detailed overview is given in Cutler and

Zeckhauser (2000). Most studies covered there confirm the existence of adverse selection in

health insurance. We contribute to enlarge the set of insurance branches analyzed.

Secondly, in recent studies it has been shown that unobserved heterogeneity, e.g. in risk
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aversion, is also important and must be controlled for. Otherwise the standard positive

correlation test might deliver misleading results. Two ways to accomplish this are unused

observables introduced by Finkelstein and Poterba (2006) and Finkelstein and McGarry (2006)

or Finite Mixture Models as proposed by Gan et al. (2011). We will take up both approaches

and compare the results. This enables us disentangling the effects of heterogeneous preferences

(risk aversion type) and adverse selection (risk type).

Hendren (2013) develops a model that shows that private information, held by the potential

applicant pools, might explain insurance rejection. He analyzes, amongst others, the non-

group market for disability and finds a significant amount of private information held by

those who would be rejected and more private information for those who would be rejected

relative to those who can purchase insurance. He deduces that private information prevents

the existence of large segments of this insurance market. In Germany the situation is quite

different. The typical rejection of insurance coverage does not exist in the insurance market

(for end-consumer4). The only exceptions where insurance rejections are an issue are private

health insurance, where at least a basic insurance tariff has to be granted and application

cannot be denied, and flood insurance, if the real estate property is located in a high-risk zone.

In the private disability insurance which we analyze every applicant gets coverage according

to the risk classification which comprises only two binary variables (gender and occupational

class). Only in the case for exceptionally high insured sums, e.g. for artists or professional

soccer player, an individual underwriting takes place but this is done by specialized insurance

companies.

Accidents vs. claims. In the case of insurance contracts with deductibles, as in

automobile insurance, the distinction between accidents and claims is important. Accidents

which are below the deductible are usually not filed and this kind of accident is unobservable

for the econometricians. One way out is to consider only accidents in the analysis which

are above a certain threshold exceeding the highest deductible in any case, but this leads,

technically speaking, to the comparison of truncated (conditional) distributions. In casualty

insurance, all accidents are filed, so the ‘accidents vs. claim problem’ does not exist here, in

contrast to many other types of insurance which have been analyzed recently in the literature.

For the automobile insurance we refer to Spindler et al. (2013) and the reference therein.

Adverse selection and moral hazard. Most studies can only test for asymmetric

information as a whole, but not for moral hazard and adverse selection separately. Especially

in cross sectional data, the positive correlation cannot be broken down into its constituent

4In the market for insurance for companies (reinsurance) coverage might be rejected there.
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parts.5

In the private disability insurance, which is analyzed in this paper, moral hazard seems to

be negligible because of several reasons.

First, it seems reasonable to assume that a disability insurance policy does not lower the

diligence and prudence of the insured, as the consequences are in any case dramatic and

therefore ex ante moral hazard can be excluded. This is in line with the approach in health

economics where it is often assumed that ex ante moral hazard is negligible while the focus

is on ex post moral hazard (cf. Cutler and Zeckhauser, 2000, p. 576). But in the private

disability insurance ex post moral hazard is controlled by the reimbursement schedule which

is quite objective.

Second, if the claim in disability insurance is sufficiently high, the claims settlement de-

partment of the insurance company requires an accident report and calls external experts to

check the course of events which led to the accident and to clarify the liability and doctors to

assess the size of harm according to the dismemberment schedule. Cases in which the insured

event is caused on purpose or by gross negligence are extremely rare and proved cases of fraud

are not contained in the data set.6

Third, while in the social disability insurance the number of applicants is negatively corre-

lated with the economic situation resp. cycle, the accident probability in the private insurance

is constant over time. In the period we analyze the rate of claims per insurance contracts

stays on the small level of 0.00215.

Summing up these points, we argue that in the disability insurance moral hazard is absent

(per definitionem). If one does not want to maintain this assumption, our results can be

interpreted as test for asymmetric information, comprising both adverse selection and moral

hazard.

3 Accident / Disability Insurance

Accident insurance is essential for many insurees, as it covers risks which touch the existence

of individuals, i.e., the loss of human capital. In Germany, there are two pillars of disability

insurance: a compulsory disability insurance and a voluntary private disability insurance.

5Abbring et al. (2003) use panel data to separate moral hazard from adverse selection in the automobile
insurance. They exploit the bonus malus coefficient which exists in the automobile insurance but not in other
kinds of insurance.

6Personal communication with actuaries. More detailed figures are available, but for reasons of confiden-
tiality, cannot be disclosed.
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3.1 The Statutory Accident / Disability Insurance

The statutory disability insurance covers only risks which are related to the workplace. These

are risks such as working and commuting accidents and occupational diseases. In the case of

such an event, the statutory accident insurance provides both cash and non-cash benefits. The

most important non-cash benefit is meeting the costs for out-patient treatment and hospital

care related to the accident. In the case of accidents at work these costs are borne by the

statutory accident insurance and not by the health insurance.7 In these cases also the free

choice of medical practitioner is restricted and special clinics for accident cases are provided

by the responsible. The most important cash benefits are a continuation of payments and

finally, if a permanent incapacity for work is diagnosed, an invalidity allowance (pension).

The invalidity allowance is paid if the loss of earning capacity exceeds 20%. In the case of

a full loss (100%) two third of the yearly income are paid. For smaller degrees the amount

is adjustet proportionally, e.g., for a 50% invalidity only 1/3 for the yearly income is paid as

disability pension. The degree of disability is determined by experts. The statutory disability

insurance is financed by member companies of the employers’ liability insurance association

(Berufsgenossenschaft) which administrates and organizes the statutory disability insurance

for different occupation classes. Everyone who is employed at these companies is covered by

the disability insurance.8 Self-employed can be insured voluntarily under special conditions.

3.2 The Private Accident / Disability Insurance

Private disability insurance usually covers disability and dismemberment, death, and a hos-

pital per diem. These are the basic risks which are covered by default.9 10 In addition, some

insurance companies offer additional insurance payments, e.g., reimbursements of the costs

for treatment at a health resort or the costs for plastic surgery. It is important to mention

that these eventualities are only covered if they arise as a consequence of an accident.

For each eventuality, i.e. disability, death and hospital stay, the insuree can choose the

level of payments in the case of an occurrence of the insured event. For the hospital per

diem the insuree choses the daily amount. He can also choose the amount which should be

paid to the bereaved in case of his death. In the case of disability, the insuree chooses the

insured sum (i.e., the coverage) for the case of a total disability (100%). For lower degrees

7The costs for medical treatment of accidents in the leisure time are covered by the health insurance.
8Actually, all employed workers in Germany are covered by the statutory disability insurance.
9Strictly speaking, the daily payment in the case of a hospital stay consists of two parts, a hospital per

diem and a convalescence allowance, but this distinction is only of minor importance for the analysis.
10The costs for the hospital treatment are covered either by the health insurance or the statutory disability

insurance. The hospital per diem is payed for the inconvenience of the hospital stay in cash.
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of disabilities, which are determined according to a dismemberment schedule (‘Gliedertaxe’),

a proportional share of the chosen level is paid out by the insurance company. Additionally,

for the case of disability, the insuree can choose between certain schedules of progression. For

example the insuree can choose to obtain the full amount for total disability from disabilities

of 50% onwards or to obtain twice or five times the chosen basic amount from certain levels

of disability (in most cases, relatively high degrees of disability) on. The chosen progression

clearly influences the insurance premium paid by the insuree.

The premium depends on these chosen levels for each eventuality. Additionally, the insur-

ance companies can use variables such as occupation, sex, age, and so on, for risk classification

and pricing. These observables also determine the insurance premium. The insurance com-

pany where our data set stems from uses only two binary variables for risk classification:

gender and the riskiness of the occupation. Such a restricted risk classification is wide-spread

in the accident insurance, although it might be surprising at the first glance for (insurance)

economists.

Private disability insurance can be bought by both employed and self-employed and is

independent from the statutory disability insurance. The underwriting process is for all

applicants the same and — as mentioned above — only two variables are used for pricing,

independent of the insured some or employment status. An explanation for this limited risk

classification will emerge as a result of the empirical analysis.

As the most important risk covered is the disability, we will restrict our analysis to the

eventuality disability.

3.3 Comparison

As the compulsory disability insurance applies only to employees (e.g., not to the self-employed

by default) and as the disability pension from the compulsory disability insurance is very lim-

ited in the case of an accident and applies only to work accidents, a private disability insurance

is a very important supplement. E.g. 80% of all accidents occur outside the workplace11 and

therefore are not covered by the statutory accident insurance.

In the case of an accident, payments from the statutory and private insurance are not offset.

They are paid independently, depending only on the (contractual) conditions. Therefore, for

employed, the private disability insurance is additional to the statutory coverage, while for

most self-employed the private disability insurance is the only source of coverage in the case

of accidents.

11GDV (2010)
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One important difference between the statutory and private accident insurance is how

the size of claim (degree of disability) is determined. In the private disability insurance the

basis is the so-called dismemberment schedule and in the statutory accident insurance the

impairment of the capacity to work is evaluated by experts. If an accident is associated with,

e.g., the loss of a thumb, then the private disability insurance pays 20%12 of the insured sum

stated in the insurance contract. In the statutory disability it is examined how the loss of

thumb impairs the employability. Therefore it is possible (and often happens) that for the

same accident different degrees of capacity to work are stated depending on the occupation

held. Therefore the reimbursement of the private insurance is less uncertain and provides

additional security. It is a measure to hedge against the risk of the expert opinion.

In order to illustrate the institutional details introduced above we suppose an employee

with average income who encounters an accident which leads to a disability of, e.g., 75%

which makes it impossible to work anymore. We additionally assume that he has a private

disability insurance with 200, 000 Euro insured sum and factor 2 of progression from degrees

50% onwards. If this accident happens in his leisure time the statutory insurance pays nothing.

The health insurance would cover the costs for inpatient and hospital treatment. The private

insurance would pay 200, 000 ∗ 0.75 ∗ 2 = 300, 000 Euro. If the accident is related to the

work place the statutory disability would pay the costs for medical treatment. Moreover,

the statutory accident insurance would pay an annually disability pension. Suppose his his

income was 30, 000 Euro. Than the annual pension is 30, 000 ∗ 2/3 ∗ 0.75 = 15, 000 Euro.

Additionally, he would get the payment of 300, 000 Euro of his private disability insurance.

4 The Data Set

4.1 Overview and Structure

For our analysis, we have had access to a proprietary data set of a German insurance company.

The data set contains all contracts which were valid in the year 2005 (i.e., which were valid /

under risk at January 1, 2005) or signed afterwards. These contracts are traced for a period

of four years (until the end of 2008). For example, let us assume that a contract was signed

before 01/01/2005 and was still active at this date. Then possibly three things can happen

which are recorded in the database (not necessarily mutually exclusive):

1. One accident (or possibly several accidents) occurred during the period. Then the kind

of claim and the amount of payments are recorded.

12This is the value of the thumb accoring to the dismemberment schedule.
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2. No claim was filed during this period.

3. The contract was terminated during this period. Then both the termination date and

the claim history up to that date are recorded.

Several different persons can be insured under one contract. For example a father can take

out a policy for himself, his wife, and his kids. Such constellations are also captured in the

database. For each insured risk, the personal data and claim history are filed. As we want to

test the risk assessment of the individual for themselves, not the ability to assess the risk of

other individuals, we restrict ourselves to contracts under which only one person is insured.13

For each insured individual, the following information is contained in the database:

1. Personal information which is partially used for pricing / rating, e.g., date of birth, sex,

occupation.

2. Full information about the contract: date of signing of the contract, date of termi-

nation (if it applies), chosen amount of insurance benefit for each eventuality, annual

adjustment.

3. Detailed information concerning the claims.

The data set contains approximately 2.5 million contract years. This corresponds to n =

957, 506 insurees.

While testing for asymmetric information, the following pitfall may arise: let us assume that

a contract was signed on March 1, 1990. If the contract remained valid until 2005, it is still

under consideration and in the sample. But if, for example, an accident occurred in the year

2000, then the contract was set ‘historic’ and is not in the sample. Therefore, there is a sample

selection with a tendency for ‘good’ risks being in the sample given the same date of signing

(‘attrition bias’).

A way to circumvent this problem is to take the subsample of all contracts which were

signed after January 1, 2005 and to trace them through the period. This subsample still

has a size of n = 77, 125 and will serve as “working sample”. It is reasonable that the

individuals might have an informational advantage concerning their accident probability but

not concerning the timing of an accident.14 Therefore, this procedure should not influence the

13Multi-person contracts are excluded and as the number of multi-person contracts is very small and as these
persons (except the children) are not very different from the other insurees, this does not lead to a selection
problem. The minimum age of 14.6 in Table 2 refers to single-person contract where a child is covered and the
premiums are paid by the parents.

14According to personal communication with actuaries, the accident probability rises with age, i.e., at greater
ages, accidents occur more often, but this increase should concern good and bad risks comparably.
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results or distort them. All the results and analysis in Section 6 are based on this subsample.

As the option of choosing an annual adjustment will become important later, we present a

brief definition.

Annual adjustment. Upon signing a contract, the insurees can choose the option of

annual adjustment. If they choose this option, the coverage is increased annually by a fixed

percentage for each eventuality covered and the premium is adjusted correspondingly. There

are two main reasons for choosing this option. One is to compensate for inflation. The other

is to adapt to the standard of living. With increasing age and experience, income and living

status grow and therefore higher insurance protection is preferred. This option, of annually

adjusting the coverage, is chosen by 32.0% of the insurees. The average age of policy holders

with this option is 35.1 years, and that without annual adjustment is 42.9. While an increase

in the coverage could also be renegotiated every year when the contract is renewed, this

automatic increase is especially comfortable. As an aside, although this variable is a decision

variable and therefore endogeneity might be an issue, we will treat it as a exogenous variable.

In the literature for testing for asymmetric information, the decision to choose a deductible is

also treated as exogenous.15 Moreover, in comparison to the choice of contract, the choice of

annual adjustment is only of minor importance and subordinate. It is not part of the coverage

and does not enter the premium calculation directly, only in an indirect way via the insured

sum where no difference is made if the insured sum is increased automatically or set by the

insuree.

Later, we will use this option as an “unused”observable. The insuree can choose to get this

feature or not. This rises the question how this variable could be used for risk classification

ex ante, like other demographic variables. One way to implement this would be to predefine

some insured sums, where the insuree can choose from, with different insured sums available

if this option is chosen (in connection with a nonlinear pricing scheme). In the current setting

it could be used for an above average increase in prices in the case of an extension of contract

to reflect the higher riskiness of these people as we will see later.

4.2 Descriptive Statistics

In this section we present detailed descriptive statistics of the data set. As this data set is new

in the literature and proprietary a descriptive analysis might be of interest in itself. Although

we focus on disability as the most important risk covered, we present statistics for the other

eventualities.

15One exception is, e.g., Puelz and Snow (1994).
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Table 2 displays descriptive statistics of the subsample used for the analysis, i.e. all con-

tracts signed after January 1, 2005. For completeness, descriptive statistics for the complete

sample are given in the Appendix. 455 claims (i.e. accidents) were filed during the period

under consideration as can be seen in Table 1. “Cost of claims” in the tables contain mainly

the payments for claims in the case of an accident. A comparison of the descriptive statistics

shows that the selected subsample is representative. The mean age is approximately 40 years.

57.2% of the insured are male and the dynamic adjustment is chosen by 1/3 of the insured.

The highest chosen insured sum for disability is one million Euro, but the mean is about

100,000 Euro. The small mean for the cost of claims indicate that the claims distribution

is highly skewed as most insurees have no accidents. This pattern is well know in actuarial

science.

Table 1: Number of claims

Eventuality Whole sample Subsample

disability 12, 901 455
death 170 11
hospital per diem 15, 552 392

Table 2: Descriptive statistics of the subsample

Variable Minimum Mean Maximum Standard Deviation

age 14.6 40.3 97 16.2
male 0 0.572 1
dynamic 0 0.324 1
insurance sum for disability 3, 835 103, 823 1, 032, 500 131, 937.3
insurance sum for death 767 5, 415 51, 130 7, 140.6
insurance sum for hospital per
diem

2.5 8.3 65 9.6

cost of claims for disability 0 13.9 115, 000 561.9
cost of claims for death 0 1.29 21000 126.9
cost of claims for hospital per
diem

0 1.9 5, 458 46.8

sample size n = 77, 125. All figures for sums and costs are in Euro.

Figure 1 shows the distribution of age at signing the contract by gender and if annual

adjustment (“dynamic option”) is chosen. We see a similar pattern for men and women and
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Figure 1: Age at signing the contract by gender and dynamic option.

that the annual adjustment is especially chosen by younger insurees. The peak at the age

of 18 can be explained with the reaching the age of consent. For signing the contract at a

younger age the allowance of the parents is required or the parents close the contract in the

name of their child.

Figures 2 and 3 display the distribution of the chosen insured sums (higher than 5, 000

Euro) and of the encountered claims, both by annual adjustment (dynamic) and gender. The

claims (measured in degree of disability) are given in absolute numbers. The option dynamic

is chosen by 10, 620 women and 14, 055 men, approximately one third of the insured. Figure

2 shows that there are some focal points in the choice of the insurance sum. Most claims are

in the range up to 20% as Figure 3 indicates.

To close this section, we give some facts and figures about disability insurance in Germany

(GDV, 2010): in Germany, 40.8% of all households carry disability insurance. In 2009, the
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Figure 2: Chosen insured sum for disability by gender and dynamic options.

premium income was 6, 389 million Euro and claims expenditures were 2, 928 million Euro.

This results in a claims ratio of 58.2%.

5 The Theory of Asymmetric Information and the Basic Test-

ing Procedures

Asymmetric information comprises two different phenomena: adverse selection and moral

hazard.16 Many equilibrium models of asymmetric information predict that insurees with

more insurance coverage should be more likely to experience a loss, i.e., there is predicted

a positive correlation between risk and coverage. With moral hazard, a higher insurance

coverage reduces the cost of the occurrence of the insured event. This lowers the incentives

16Winter (2000) and Dionne et al. (2000) give surveys of both phenomena.
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Figure 3: Absolute number of claims according to the degree of disability by gender and
dynamic option.

for prevention or for cautious behavior, and therefore the expected loss is increased after the

signing of an insurance contract.

Adverse selection means that the insured knows his risk type ex ante, i.e., before the

contract is signed, while the insurance company does not have this information. The insurees

who know that they have a high risk will buy contracts with more coverage than the ‘good’

types. As ‘bad’ risk types have a higher marginal utility of insurance at a given price they

also accept a higher per unit price for coverage and this can be exploited by the insurance

companies by offering a menu of contracts to screen the different types.

Therefore the theory of asymmetric information predicts a positive correlation between

risk and coverage. To identify the risk of an insuree, insurance companies use observables

such as age, sex, and so on for risk classification. Thus the positive correlation property is
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conditional on all observables which are used for pricing.

In order to test whether there is a positive correlation, one has to set up two equations,

one for the coverage (Ci) and one for the risk (or loss) (Li). By Xi, we denote the exogenous

variables which are used for risk classification. To keep the exposition simple we use linear

models17

Ci = Xi ∗ β + εi (5.1)

Li = Xi ∗ γ + ηi (5.2)

with error terms εi, ηi. Under the null hypothesis of zero correlation between risk and coverage,

i.e., symmetric information, the residuals in the two equations should be uncorrelated. A

significant positive correlation is an indication of asymmetric information.

This kind of test for positive correlation has been widely used in the literature: Cutler and

Zeckhauser (2000) review studies in health economics, and Cohen and Siegelman (2010) give

an overview of results for many different branches of insurance. The evidence for asymmetric

information is not clear-cut and varies with the kind of insurance.

One important finding is that the absence of a correlation between coverage and risk

can be consistent with the presence of asymmetric information. DeMeza and Webb (2001)

show that when individuals have private information not only about their risk but also about

their risk aversion, and when risk averse individuals are less risky (e.g., because they are

more cautious), then we might also observe a zero correlation in insurance markets.18 In

other words, if individuals with stronger preferences for insurance are also of lower risk, then

preference-based selection may offset risk-based selection, and the sign of the correlation is

undetermined. When insurees have private information about their risk type Ti and their risk

aversion Ai, both influence the unobservable error terms:19

εi = Ti ∗ κ1 +Ai ∗ κ2 + νi (5.3)

ηi = Ti ∗ ξ1 +Ai ∗ ξ2 + τ i, (5.4)

where νi and τ i denote error terms. The principle of the correlation test is that in the case of

private information about the risk type, the risk type Ti is positively correlated with coverage

and risk, i.e., κ1 > 0 and ξ1 > 0. But, as stated above, if risk aversion Ai is positively

17Otherwise the linear models can be regarded as approximations.
18In the literature it is claimed that advantageous selection might lead to a zero correlation, but Chiappori

and Salanié (2012) argue that in competitive markets only a zero or positive correlation between risk and
coverage is possible.

19This exposition follows Finkelstein and Poterba (2006).
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correlated with coverage (κ2 > 0) and negatively correlated with risk (ξ2 < 0), then the

correlation between the error terms εi and ηi may be zero or negative. In this case, a test for

positive correlation might produce misleading results.

This shows that unobserved heterogeneity in insurance markets, especially when one tests

for positive correlation, is very important and should be taken into consideration. There are

several ways to test for asymmetric information and to control for heterogeneity. One is to

employ unused observables, as proposed in Finkelstein and Poterba (2006), or to use finite

mixture models to account for differences in risk aversion as Gan et al. (2011). We will explain

these testing procedures in the following sections.

6 Methods and Results

This section gives a short review of the methods applied, customizes them to disability insur-

ance and presents the results. First, we present shortly the basic tests for positive correlation

and summarize the results. The detailed results are presented in the Appendix. Second, we

give a summary of the test of unused observables (Finkelstein and Poterba 2006) and display

the results. Thirdly, we introduce the finite mixture models which are the most general class

and nest the other ones. Finally, we compare the methods and results.

We present only the results for the occurrence of disability. The danger of disability is the

main reason why insurees buy disability insurance. In the case of disability insurance, only

sex and the riskiness of the occupation which is given by two categories are used for pricing

by the insurance company. Other variables such as age, place of residence, and so on, are not

used although they are available. Therefore we conduct the standard test procedures both on

only the variables used by the insurance company (‘basic setting’) and on an extended set of

observational variables which are available in the data set. The extended configuration also

has family status, occupation, age, and whether the insuree has chosen the option to increase

the insured sum automatically on an annual basis (annual adjustment). The basic idea of us-

ing the extended configuration is to test if (and to what extend) unused variables in the data

set might decrease a potential positive correlation and help to mitigate the problem of ad-

verse selection. These additional variables also allow us to apply the ‘unused observables test’.

In the following, X denotes the exogenous variables which are used for risk classification

by the insurance company. C denotes the chosen contract. In disability insurance, this is the

insurance sum chosen for each eventuality, for example the sum which is paid out in the case

of death, the sum for a 100% disability (together with the chosen progression or factor) or
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the daily payment for a hospital stay. All other conditions of the contracts are identical. L

measures the risk. The risk is measured as ‘ex post risk’, e.g., by the number of accidents,

the damage payments caused by the insuree or the degree of disability stated in the case of

an accident. An index i refers to a certain individual or contract, and is omitted if there will

be no confusion. In Section 6.1.1, 6.1.2 and 6.3 the variable for the choice of coverage Ci is

defined as a binary proxy, in Section 6.1.3 and 6.2 as a continuous variable.

6.1 Basic Testing Procedures

The theory of asymmetric information predicts a positive correlation between risk and cover-

age, conditional on all observables X which are used by the insurance companies for pricing.

There are several econometric procedures to test this conditional ‘positive correlation prop-

erty’. This can be done by using two probits or a bivariate probit model and testing for a

positive correlation. A detailed description is given in Appendix A. These procedures were

applied to testing asymmetric information for the first time in Chiappori and Salanié (2000)

and since then have become the standard procedures in this field, even when the risk or

coverage variables are continuous, as it is the case, e.g., in the automobile insurance.

In order to apply these parametric procedures, one has to define binary variables for ‘risk’

and ‘coverage’.20 Risk is measured as ex post risk and is defined as 1 if there was at least one

accident or claim, and 0 otherwise, i.e., if there was no accident during this period. As in the

disability insurance only one accident can occur the definition as binary variable fits perfectly.

For the ‘choice of contract’, we also define a binary variable, which is set to 1 if the insured

sum is above a predefined cut-off value and 0 otherwise. In order to check for robustness and

to analyse whether and how the asymmetric information varies with the level of the insured

sum, we vary this cut-off level.21 The contracts are identical, only the levels of insured sums

can be chosen by the insuree.

The positive correlation between risk and coverage is significant for the ‘low’ and ‘middle’

cut-off levels (10, 000 Euro, 50, 000 Euro, 100, 000 Euro, and 200, 000 Euro) for both the basic

and the extended configuration. For higher thresholds, the correlations remain significant

for the basic setting, while they become insignificant for the extended configuration.22 For

20In the literature, several different parametric methods to test for asymmetric information have been pro-
posed. Spindler et al. (2013) show that these procedures deliver quite consistent results, so that restricting to
the correlation test is no limitation.

21The choice of the cut-off is driven by the empirical distribution of the chosen sums, so that a natural
interpretation of low, middle, and high insured sums arises. An alternative would be to choose the cut-off
according to quantiles.

22In the extended version, we included age also as year dummies (instead of a continuous variable), but this
had only a slight influence on the results.
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the low cut-offs, the correlation is quite high (between 0.5 and 0.6) for both settings. When

interpreting the results, one has to keep in mind that in large samples, even small differences

become (statistically) significant, while they are economically meaningless. This might ap-

ply to the small but significant correlation of the high insurance sums in the basic setting.

One important finding is that additional information might reduce or eliminate the observed

asymmetric information in disability insurance.23

6.2 A Linear Regression Approach

The parametric approaches described above have been successfully applied to different kind

of insurance branches, even if the variables, e.g. the chosen insured sum or the claim size, are

continuous, as e.g. in the automobile insurance. But also the continuous nature of the risk

and choice variable can be taken into account. For the disability insurance the chosen insured

sum might be explained by the risk variables X and the number of accidents N24:

Ci = Xiβ +Niδ + εi (6.1)

where Ci denotes now the exact chosen insured sum of the insuree in Euro. In the case of

asymmetric information the coefficient for Ni is significantly positive. Dionne et al. (2001,

2006) show that – although this approach has been applied in the literature – it is vulnerable

to misspecification. Therefore they propose to control for possible nonlinearities. A correction

for the setting at hand is the following procedure: In a first step a probit regression of the

accident variable N on the variables for risk classification is run and for each individual the

predicted accident probabilities P̂ are calculated. In a second step the regression from above

is run but with the predicted probabilities as additional regressor:

Ci = Xiβ +Niδ + P̂iκ+ εi (6.2)

If the coefficient of Ni remains positive existence of asymmetric information is confirmed.

A modification is to replace the number of accidents (discrete variable) by the level of

disability in the case of a filed claim (continuous).

When we regress the chosen insured sum on the risk variables and the number of accidents,

all coefficients are highly significant and therefore the ex post risk is a significant predictor

for the choice of coverage, as can be seen in Table 3, columns 2 − 5. When we control for

23The increase of the correlation for the value of 10, 000 might be caused by functional or distributional
misspecification. This issue is discussed in detail in Su and Spindler (2011).

24As the maximum number of accidents in the data set is one, this variable is in fact binary.
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Table 3: Results – Regression with and without predicted accident probability

Model without predicted probability Model with predicted probability

Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)
constant 109762.89 901.72 21.73 0.00∗∗∗ −202494.11 186743.42 −1.08 0.28

occupation −14946.64 1248.64 −11.97 0.00∗∗∗ −138371.58 73823.24 −1.87 0.06∗
sex −4674.70 1153.99 −4.05 0.00∗∗∗ 55789.86 36178.45 1.54 0.12

number of accidents 86847.31 6070.96 14.31 0.00∗∗∗ 86813.99 6070.92 14.30 0.00∗∗∗
predicted probability 558.42 333.96 1.67 0.0945∗

∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, respectively.

nonlinearities, i.e. take up the predicted probabilities for each insuree based on the information

available to the insurance company, the number of accidents stays highly significant, while the

other variables lose their influence. These results confirm that there is a positive correlation

between risk and coverage which indicates the existence of asymmetric information in this

market (see Table 3, columns 6−9). Replacing the number of accidents (discrete) by the level

of disability confirms the results.

6.3 Test with Unused Observables

6.3.1 Method

This test for asymmetric information was introduced by Finkelstein and Poterba (2006). The

basic principle of this test is that the existence of a variable or characteristic that is known

to the insuree, but unknown or not used by the insurance company (e.g., for regulatory or

legal reasons), and that is (positively) correlated with both coverage and risk is an indication

of asymmetric information. In the case of symmetric information, there should not exist any

variable or buyer characteristic that is correlated with both insurance coverage and the risk

of loss, conditional on the risk class.

This test can be formalized and implemented in the following way (using the notation

from Section 2). With a potential unused observable W , we estimate the following system:25

Ci = Xiβ +Wiα+ εi (6.3)

Li = Xiγ +Wiδ + ηi (6.4)

If we reject the hypothesis α = 0 and δ = 0 simultaneously for the variable W under consid-

eration, then there is asymmetric information.

In order to implement the test, we need the same information which is needed for the positive

correlation tests introduced in the previous section, i.e., information about the coverage, risk,

25The exposition follows Finkelstein and Poterba (2006).
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and the exogenous variables used for pricing by the insurance company, and additionally we

need the variables which are contained in the data but not used for risk classification / pricing

(the so-called unused observables). When there are one or several unused variables and for

each we cannot reject the null hypothesis of joint insignificance, then this does not necessarily

mean that there is no asymmetric information. This can be simply due to the fact that we

do not observe all relevant (unused) variables. This is a limitation to this test, and must be

taken into account when interpreting the results.

6.3.2 Results

As mentioned before, the insurance company uses only sex and the riskiness of the occupation

(binary variable) for classification. In the data set there are more variables, such as age,

family status, annual adjustment of the insured sum, and so on. Therefore we are in the

rare situation of having additional information and of being able to conduct the test with

unused observables. In the context of testing for asymmetric information, we are searching

for a variable that influences simultaneously the choice of coverage and risk, each modeled as

probits.

We employ the basic models introduced in Section 6.1, i.e. bivariate probits with different

cut-off values, and extend the of variables used for risk classification (gender and occupational

class) separately by age and annual adjustment.

Table 4 presents the results for different cut-off values in the coverage equation. There

are two unused observables which have a significant influence on both variables, age and,

surprisingly, the choice of an annual adjustment of the insured sum (‘dynamic’). We report the

parameter estimates and the corresponding t-values for both equations for the unused variable.

We omit the parameter estimates of the other variables that are included as regressors, i.e., a

constant, sex, and the riskiness of the occupation class, but they are available upon request.

We present only the results for the additionally taken up unused observable in Table 4.

The variable annual adjustment (‘dynamic’) was coded in the following way: 0 if this

option was chosen and 1 otherwise.

One could suppose that age has a significant influence on the choice of coverage and also

on the risk. For risk this is the case only for the higher cut-off values at the 10% significance

level.26 For the choice of coverage, age has a significant influence at the 1% significance level.

Surprisingly, the decision of the insuree to choose an annual adjustment contains a lot of

26For the survival model, reported in the appendix, age is highly significant for all cut-off values.
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Table 4: Results—unused observables

Unused Variable Cut-off Equation Parameter t-value

bivariate probit

age

50, 000
risk −0.002 −1.43
coverage −0.020 −68.6∗∗∗

100, 000
risk −0.002 −1.79∗

coverage −0.021 −69.6∗∗∗

200, 000
risk −0.002 −1.85∗

coverage −0.012 −37.5∗∗∗

‘dynamic’

50, 000
risk −0.428 −12.5∗∗∗

coverage −3.038 −123.7∗∗∗

100, 000
risk −0.443 −13.0∗∗∗

coverage −2.146 −167.5∗∗∗

200, 000
risk −0.426 −12.5∗∗∗

coverage −1.281 −114.5∗∗∗
∗∗∗, ∗∗, ∗ denote statistical significance
at the 1%, 5%, and 10% level, respectively.

information for the choice of risk and coverage and is highly significant in both equations and

for all thresholds.

An alternative approach is to model the equation for risk by a Cox proportional hazards

regression. The occurrence of an accident can be interpreted as an event / hazard and the

time until occurrence can be modeled in the context of survival analysis. We present the

results in Appendix B which confirm the analysis of this section.

6.4 Finite Mixture Models

6.4.1 Theoretical Background

This section describes the Finite Mixture Model (FMM) we estimate. A short introduction

into FMMs and the the EM algorithm is given in Appendix C. Gan et al. (2011) introduced

finite mixture models to test for asymmetric information in insurance markets.

Before we start with the definition of mixture models, we will give a motivation for why to

use them. As mentioned in the introduction, it is possible that individuals have asymmetric

information with regard to different dimensions, e.g., their risk and their risk aversion. If

risk averse individuals are more cautious and therefore of lower risk, this might dilute the

positive correlation despite the existence of asymmetric information. Finite mixture models

are an elegant way of controlling for such unobserved heterogeneity, even if the different groups

are not known in advance. The kind of heterogeneity does not have to be specified by the
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researcher. In the example above, mixture models would make it possible to detect both

groups: the risk averse individuals with low accident probability and the high risk insurees,

and to check whether the positive correlation property holds in each group. Therefore the finite

mixture model might give more differentiated answers in situations where the one component

model gives wrong or misleading answers.

The number of components for estimation is fixed, but the number of components can be

chosen according to the AIC criterion comparing FMMs with different number of components.

For the data set at hand, we consider a mixture of bivariate probit models. For the bivariate

probits we use the parametrization proposed in Greene (2008).

We start with a two-equation latent variable model, where the first equation describes the

choice of coverage and the second one the risk as in the basic models:

Y ∗
1 = X ′

1β1 + ε1, Y1 = 1 if Y ∗
1 > 0, 0 otherwise, (6.5)

Y ∗
2 = X ′

2β2 + ε2, Y2 = 1 if Y ∗
2 > 0, 0 otherwise, (6.6)

E[ε1|X1,X2] = E[ε2|X1,X2] = 0 (6.7)

Var[ε1|X1,X2] = Var[ε2|X1,X2] = 1 (6.8)

Cov[ε1, ε2|X1,X2] = ρ. (6.9)

To construct the likelihood, we define qi1 = 2Yi1 − 1 and qi2 = 2Yi2 − 1. qij = 1, if Yij = 1

and −1, if yij = 0 for j ∈ {1, 2}. Now let

zij = X ′
ijβj and wij = qijzij , j = 1, 2, (6.10)

and

ρ∗i = qi1qi2ρ. (6.11)

Denoting with φ2 and Φ2 the bivariate normal density function and cumulative density func-

tion, repectively, the probability for an observation (yi1, yi2) is given by

Prob(Y1 = yi1, Y2 = yi2|x1, x2) = Φ(wi1, wi2, ρ
∗) (6.12)

In the case of a finite mixture model with two components the probability for an observa-
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tion (yi1, yi2) is given by

Prob(Y1 = yi1, Y2 = yi2|X1,X2) = pΦ(w1
i1, w

1
i2, ρ

∗,1) + (1− p)Φ(w2
i1, w

2
i2, ρ

∗,2) (6.13)

where p denotes the mixture probability and the superscript the corresponding component.

The components can vary in both the parameter vectors entering the index and the correlation

ρ.

Finally we can form the log likelihood of an iid sample and maximize this function with

the EM algorithm.

We close this section with a remark about identification. The parametric FMM with

constant mixture probabilities which we employ is clearly identified.27 Finite mixture models

with constant mixing probabilities contain the single component model as a special case

and allow more flexibility in any case. Therefore the basic model with and without unused

observables is nested in the FMM framework.

6.4.2 Results

We implemented the mixture model in R using the package flexmix.28 As the EM algorithm

is only capable of finding local maxima, we used different starting values (random assignment,

20 trials). We repeated the procedure for different cut-off values to check its robustness and

to compare the results with the results of a single component.

We present the corresponding parameter estimates stacked in a column in Table 5. Sex

is coded as 0 for male and 1 for female. The occupation dummy is set to 1 for dangerous

jobs and 0 for normal jobs. We conducted the FMM also for the basic configuration of the

insurance company. For lack of space and as the results concerning the correlation, variables

and components are comparable, we present and interpret only the results for the extended

versions as it offers more detailed insights into the nature of the different types.

The last row presents the AIC:29 for all three models it is lower than the corresponding

value for the one component bivariate probit model. Therefore, the two component model

is preferable to a one component model from the point of view of model selection. We omit

the results for three and four component mixture models as according to the AIC the two

component model is selected. The AIC can be used to select the number of components for

a fixed cut-off value, but it has only limited informative power in comparing models with

27Identification in finite mixture models has been addressed recently by Gan et al. (2011) and especially by
Henry et al. (2010).

28The package flexmix is described in Leisch (2004) and Gruen and Leisch (2007).
29The BIC gives comparable results and therefore are omitted for brevity.
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different cut-off values as our primary goal is not to find the best fit but to analyse how

different chosen insured sums are related to risk.

For the models with thresholds 50, 000 and 100, 000 Euro, we observe quite similar pat-

terns: We can identify a group which has a lower risk of having an accident (Component 1),

while Component 2 has a higher risk of having an accident as is indicated by the higher con-

stant. But the choice of coverage is similar for both groups. The constants are not significantly

different. Nevertheless we observe a high correlation between risk and coverage within each

component. For the model with the highest threshold, the interpretation is slightly different:

we observe again one group which is less risky (Component 1) than the other. The choice of

contract is similar for both groups. The only difference is that for Component 2 we have a

zero correlation, while for Component 1 the correlation is significantly positive.

Table 5: Results—two components

cut-off 50,000 cut-off 100,000 cut-off 200,000

Component 1 Component 2 Component 1 Component 2 Component 1 Component 2
risk
constant −3.097∗∗∗ −1.847∗∗ −3.040∗∗∗ −1.795∗∗∗ −3.042∗∗∗ −1.863∗∗∗

(0.712) (0.846) (0.467) (0.340) (0.584) (0.390)
age 0.009∗ −0.015∗ 0.009∗∗ −0.018∗∗ 0.008∗ −0.015

(0.005) (0.008) (0.004) (0.009) (0.005) (0.009)
sex 0.259 −0.544∗∗ 0.203 −0.524∗∗∗ 0.255 −0.520∗∗

(0.247) (0.258) (0.194) (0.200) (0.277) (0.236)
occupation 0.139 0.071 0.111 0.093 0.222 0.021

(0.175) (0.095) (0.129) (0.087) (0.170) (0.089)
coverage
constant 0.725∗∗∗ 0.730∗∗∗ 0.635∗∗∗ 0.672∗∗∗ −0.169 −0.213∗

(0.052) (0.069) (0.062) (0.077) (0.152) (0.114)
age −0.020∗∗∗ −0.020∗∗∗ −0.021∗∗∗ −0.021∗∗∗ −0.013∗∗∗ −0.012∗∗∗

(0.0004) (0.005) (0.0003) (0.0007) (0.001) (0.001)
sex 0.098 0.082 0.077 0.078 −0.097 −0.068

(0.093) (0.084) (0.077) (0.077) (0.137) (0.131)
occupation 0.015 −0.017 −0.074∗∗∗ −0.121∗∗∗ −0.323∗∗∗ −0.263∗∗∗

(0.019) (0.065) (0.024) (0.046) (0.084) (0.052)
correlation 0.582∗∗∗ 0.554∗∗∗ 0.508∗∗∗ 0.349 0.325∗∗∗ 0.040

(0.330) (0.325) (0.133) (0.172) (0.059) (0.122)
AIC 106, 758.1 105.591, 7 83, 508.1
∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, respectively.
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6.5 Comparison and Remarks

The Finite Mixture Model is the most general model and nests both the corresponding basic

(single component) model and even the models including “unused”observables. We find that

a FMM with two components is appropriate and therefore the widely used positive correlation

test is misspecified. An important question is what can be learned in the case of misspecifica-

tion. If there is a positive correlation for both components then it is expected that a positive

correlation is also observed in the single component model. Therefore if the single component

model indicates asymmetric information this is strong evidence. But for higher insured sums

we observe that in one component the positive correlations disappears and what happens in

aggregation might be unclear. Similarly, if there is an unused variable which is correlated with

both risk and coverage in the single component model this is an indication for asymmetric

information. The other case, i.e., that an unused observable is not significant is harder to

interpret and might be because of misspecification. Nevertheless, unused observables can be

easily incorporated in the FMM framwork.

The second point we would like to discuss is the nature of the variable, i.e., continuous

vs. discrete variables. In our case both coverage (the chosen insured sum) and risk (degree of

disability) are continuous. A restriction to binary variables might lead to a loss of information,

especially for the insured sum. In case of an accident, the degree is only second-rate, and

the indicator variable if an accident occurred is a reasonable proxy. To take the continuous

nature into account we estimate a regression model with continuous choice variable in Section

6.2 and confirm the existence of asymmetric information. A related approach is

Ci = Xiβ + εi (6.14)

Li = 1(Xiγ + ηi > 0) (6.15)

where 1(·) denotes the indicator function.

The advantage of even transforming the insured sum to a binary variable with different

cut-off values is that it gives a “finer resolution” how the extent of asymmetric information

varies with the insured sum. E.g. the regression approach shows that there is asymmetric

information in the data and the approach with different cut-off values shows that this is

especially the case for the low insured sums while for the really high insured sums which

might suggest superior knowledge of the insuree do not show a positive correlation.

Therefore, in this paper we apply all approaches to give an as detailed picture as possible

and see how the results vary depending on the method applied.
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7 Conclusion

In this paper we analyzed the extent of asymmetric information in disability insurance, espe-

cially taking into account unobserved heterogeneity. While disability insurance covers various

eventualities, we concentrated on disability, as it is the main reason for choosing this kind of

insurance and covers risks which are essential for the insured. Besides the standard tests for

asymmetric information, we also applied the test with unused observables and used a finite

mixture model with two components. As only relatively few variables for risk classification

are used in disability insurance, we are in the rare situation of being able to find variables

in the data set which are not used by the insurance companies. The unused observables age

and, surprisingly, the choice of an annual adjustment of the insured sum have an influence

on both the choice of the insured sum and the probability of having an accident. Therefore

they indicate the existence of asymmetric information even in the presence of differences in

preferences (risk aversion). The finite mixture model indicates the existence of two different

types of insurees. The concrete interpretation depends on the definition of the cut-off value

used for the proxy for risk, but it is not straightforward in the sense of high and low risk averse

types as in Gan et al. (2011). For each component, we found a significant positive correlation

between risk and coverage, and therefore we can confirm the result of the standard model

especially for low and middle range insured sums. For high insured sums, the correlation

within each group is lower, and for one component we found a zero correlation between risk

and coverage, therefore an absence of asymmetric information. This result is quite interesting

as it delivers a deeper insight than the one component model and shows that two different

types can be identified.

The fact that the variable annual adjustment, which should be irrelevant from a theoretical

point of view, is correlated with the occurrence of accidents, shows that seemingly useless

variables can contain valuable information which might mitigate the problem of asymmetric

information in insurance markets and should be considered for designing contracts and for

risk classification. This is probably the most important result of our study as it offers new

ways for risk classification, pricing, and contract design.

In future research, we would like to analyse more deeply the joint distribution and depen-

dence structure of risk and coverage and to refine the finite mixture approach. The depen-

dence between risk and coverage could be modeled with a copula in this setting, to isolate the

dependence structure. This extension is left for future research.
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A Testing for a Positive Correlation

A.1 Methods

A.1.1 Two Probits

One approach is to define two probit models, one for the choice of the coverage Ci (either

a low or a high insured sum) and the other for the occurrence of an accident Li (either no

accident or damage occurred, or at least one):

{
Ci = 1(Xiβ + εi > 0)

Li = 1(Xiγ + ηi > 0),
(A.1)

where εi and ηi are independent standard normal errors, and β and γ are coefficient vectors (as

columns). Ci is defined to be 1 if the insured sum is above a cut-off value, and 0 otherwise. Li

is 1 if at least one accident happened during the period under consideration, and 0 otherwise.

The row vector Xi denotes the covariates of individual i. First, these two probit models are

estimated independently and then the generalized residuals ε̂i and η̂i
30 are calculated. These

are required for the following test statistic:

Wn =
(
∑n

i=1 ε̂iη̂i)
2∑n

i=1 ε̂
2
i η̂

2
i

. (A.2)

Under the null of conditional independence, cov(εi, ηi) = 0 and Wn is distributed asymptoti-

cally as χ2(1), as shown by Gourieroux et al. (1987).

Chiappori and Salanié (1997, 2000) introduced this approach. One drawback is that infor-

mation is lost as Y and Z have to be defined as binary variables. This is not problematic for

the risk variable as more than one accident is extremely rare. But for the coverage Ci, one

must choose a cut-off point to define the low and high insured sums. In order to check the

robustness of our results, we will choose several cut-off points to see how the definition of the

binary variable Ci influences the results.

A.2 Bivariate Probit

A related approach is to estimate a bivariate probit model in which εi and ηi are distributed

as bivariate normal with correlation coefficient ρ, which has to be estimated, and then to test

whether ρ = 0 or not. In order to test this hypothesis the Wald, Score, or LR test can be

30For example, the generalized residual ε̂i estimates E (εi|Li) . See Gourieroux et al. (1987) for the definition
of generalized residuals in limited dependent models and applications.
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used.

A.2.1 Results

In order to apply these parametric procedures, one has to define binary variables for ‘risk’

and ‘coverage’.31 Risk is measured as ex post risk and is defined as 1 if there was at least one

accident or claim, and 0 otherwise, i.e., if there was no accident during this period. As in the

disability insurance only one accident can occur the definition as binary variable fits perfectly.

For the ‘choice of contract’, we also define a binary variable, which is set to 1 if the insured

sum is above a predefined cut-off value and 0 otherwise. In order to check for robustness and

to analyse whether and how the asymmetric information varies with the level of the insured

sum, we vary this cut-off level.32 The contracts are identical, only the levels of insured sums

can be chosen by the insuree. In Tables 6 and 7 below, the results for the basic and extended

setting are given according to the different cut-offs for the proxy of the insured sum. The test

statistics in our paper are not weighted according the duration of the contract. Weighing the

contracts leads to the same results and conclusions.

The positive correlation between risk and coverage is significant for the ‘low’ and ‘middle’

cut-off levels (10, 000 Euro, 50, 000 Euro, 100, 000 Euro, and 200, 000 Euro) for both the basic

and the extended configuration. For higher thresholds, the correlations remain significant

for the basic setting, while they become insignificant for the extended configuration.33 For

the low cut-offs, the correlation is quite high (between 0.5 and 0.6) for both settings. When

interpreting the results, one has to keep in mind that in large samples, even small differences

become (statistically) significant, while they are economically meaningless. This might apply

to the small but significant correlation of the high insurance sums in the basic setting.

We applied the tests relying on two probits, on a bivariate probit and a nonparametric test

introduced in Chiappori and Salanié (2000) for the basic setting (CS np test). As all variables

used for risk classification are binary in the basic configuration, this test is a natural choice.

All these tests gave similar results as can be seen in Table 6. Although the CS np test already

31In the literature, several different parametric methods to test for asymmetric information have been pro-
posed. Spindler et al. (2011) show that these procedures deliver quite consistent results, so that restricting to
the correlation test is no limitation.

32The choice of the cut-off is driven by the empirical distribution of the chosen sums, so that a natural
interpretation of low, middle, and high insured sums arises. An alternative would be to choose the cut-off
according to quantiles. Although for choice of coverage a binary variable is only an approximation, this
procedure is in line with the literature. Moreover, varying the cut off value should give a comprehensive insight
into the nature of the relationship between risk and coverage. But as the chosen thresholds cover the set of
insured sums with a quite close mesh, this approach is preferred.

33In the extended version, we included age also as year dummies (instead of a continuous variable), but this
had only a slight influence on the results.
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confirms the existence of asymmetric information we nevertheless additionally apply tests

which explicitly control for differences in risk aversion and which are capable of dealing with

more than only binary variables. This enables us to determine different types of heterogeneous

preferences and to evaluate the effects of including not used additional variables.

One important finding is that additional information might reduce or eliminate the ob-

served asymmetric information in disability insurance as a comparison of Table 6 and Table

7 shows.34

Table 6: Results—basic configuration

cut-off point

in Euro

10, 000 50, 000 100, 000 200, 000 300, 000 400, 000

% of contracts below 51.4 52.1 56.6 78.8 94.6 96.9

bivariate ρ 0.5614∗∗∗ 0.5152∗∗∗ 0.3903∗∗∗ 0.1805∗∗∗ 0.1211∗∗∗ 0.0862∗∗

probit s.e. 0.0245 0.0229 0.0207 0.0213 0.0301 0.0372
t-statistic 22.9 22.45 18.87 8.48 4.02 2.320
LR-Test 516.0 470.1 325.3 69.0 15.4 5.1

two probits W 298.20 275.15 190.68 35.18 7.70 2.98

CS np test χ2 425.8 404.2 323.3 120.9 129.0 107.5
∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, respectively.

B Survial Model for the Test with Unused Observables

In our data set, the time of the occurrence of accidents is filed and therefore this can also

be interpreted as survival data. Introductions to survival analysis are, amongst others, Klein

and Moeschberger (2003) and Kalbfleisch and Prentice (2002).

The Cox proportional hazards regression models the hazard rate as a function of time t:

log (hi(t)) = α(t) + β1 ∗ xi1 + · · ·+ βk ∗ xik

or, equivalently,

hi(t) = h0(t) + exp(β1 ∗ xi1 + · · ·+ βk ∗ xik),
34The increase of the correlation for the value of 10, 000 might be caused by functional or distributional

misspecification. This issue is discussed in detail in Su and Spindler (2011).
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Table 7: Results—extended configuration (sex, occupation, family status, age, dynamic)

cut-off point

in Euro

10, 000 50, 000 100, 000 200, 000 300, 000 400, 000

% of contracts below 51.4 52.1 56.6 78.8 94.6 96.9

bivariate ρ 0.6209∗∗∗ 0.5296∗∗∗ 0.2918∗∗∗ 0.0878∗∗∗ 0.0455 0.0108
probit s.e. 0.0281 0.0280 0.0271 0.0234 0.0314 0.0383

t-statistic 22.07 18.91 10.75 3.76 1.45 0.281
LR-Test 369.4 303.0 142.0 15.31 2.122 0.080

two probits W 286.0 262.2 176.6 30.5 6.2 2.18
∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, respectively.

where xi1, . . . , xik denote the covariates of individual i. The model is semiparametric because

while the baseline hazard function h0(t) can take any form, the covariates enter the model

in a linear way. The hazard function, which is time dependent in the Cox model, assesses

the instantaneous risk of demise at time t, conditional on survival to that time. In the

context of testing for asymmetric information, we are searching for a variable that influences

simultaneously the choice of coverage and the hazard function, i.e., the survival function.

Table 8: Results—unused observables

Unused Variable Cut-off Equation Parameter t-value

bivariate probit
survival model

age

50, 000
risk −0.014 −4.73∗∗∗

coverage −0.020 −68.6∗∗∗

100, 000
risk −0.014 −4.73∗∗∗

coverage −0.21 −69.6∗∗∗

200, 000
risk −0.014 −4.73∗∗∗

coverage −0.012 −37.4∗∗∗

‘dynamic’

50, 000
risk −0.543 −5.47∗∗∗

coverage −3.041 −123.5∗∗∗

100, 000
risk −0.543 −5.47∗∗∗

coverage −2.148 −167.5∗∗∗

200, 000
risk −0.542 −5.47∗∗∗

coverage −1.281 −114.5∗∗∗
∗∗∗, ∗∗, ∗ denote statistical significance
at the 1%, 5%, and 10% level, respectively.
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The parameters for dynamic in the survival model are interpreted in the following way:

holding the other covariates constant, not choosing the annual adjustment reduces the hazard

rate35 of having an accident by a factor of e−0.543 ≈ 0.60 on average—that is, by approximately

40%.

The results in Table 8 confirm the results of the analysis with two probits. We identify both

age and annual adjustment as unused observables which are both highly correlated with risk

and coverage.

C Finite Mixture Models

This section briefly introduces finite mixture models, which are well established in the statis-

tical literature, especially in combination with the EM algorithm for estimation. For a more

detailed introduction, refer to McLachlan and Peel (2000) or Fruehwirth-Schnatter (2006).

Leisch (2004) and Gruen and Leisch (2007) also give an introduction to finite mixture models

and provide an implementation in the R package flexmix.

A finite mixture model with K components is given by

h(y|x,w, ψ) =
K∑
k=1

πk(w,α)fk(y|x, θk),

where ψ = (α, θ1, . . . , θK) is the vector of all parameters for the mixture density h(). It

consists of the parameter for the mixture probability α and the parameters for the separate

component distributions θi, i = 1, . . . ,K. fk denotes the density of the kth component. y

denotes the response, x the predictor, and w the concomitant variables.

For the component weights πk it is required that for all w

K∑
k=1

πk(w,α) = 1 and πk(w,α) > 0 ∀k.

In many applications, the mixture distributions πk are independent of other variables and

thus constant.

The most common method for maximum likelihood (ML) estimation of finite mixture models

with a known number of components is the Expectation-Maximization (EM) algorithm. The

EM algorithm was originally introduced for the ML estimation of incomplete data (Dempster

35For a definition of the hazard rate we refer to Kalbfleisch and Prentice (2002) and Klein and Moeschberger
(2003). Roughly speaking, the hazard function is defined as the event rate at time t conditional on survival
until time t or later (that is, T ≥ t).
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et al. 1977). The ML estimation of finite mixtures models can be interpreted in this way:

each observation belongs to a certain class, for which we do not observe the component

membership and therefore we are in the case of incomplete data. Formally, we define a latent

variable zn ∈ {0, 1}K for each observation n which indicates the class membership, i.e., znk

(the kth component of the vector zn) is equal to 1 if the observation belongs to class k, and

0 otherwise. In the EM algorithm, these unobserved class memberships znk are treated as

missing values and replaced by estimations of the a posteriori probabilities p̂nk. For a sample

of N observations the EM algorithm is given by

E-step: Given the parameter estimates ψ(i) from the ith iteration, replace the missing

data znk by the estimated a posteriori probabilities

p̂nk =
πk(wn, α

(i))fk(yn|xn, θ(i)k )∑K
u=1 πu(wn, α(i))fu(yn|xn, θ(i)u )

.

M-step: Given the estimates for the a posteriori probabilities p̂nk from the previous step,

obtain the new estimates ψ(i+1) by maximizing

Q(ψ(i+1)|ψ(i)) = Q1(θ
(i+1)|ψ(i)) +Q2(α

(i+1)|ψ(i))

with

Q1(θ
(i+1)|ψ(i)) =

N∑
n=1

K∑
k=1

p̂nk log(fk(yn|xn, θ(i+1)
k ))

and

Q2(α
(i+1)|ψ(i)) =

N∑
n=1

K∑
k=1

p̂nk log(πk(wn, α
(i+1))).

Q1 and Q2 can be maximized separately.

The EM algorithm tends to converge only very slowly and only to a local optimum. To

overcome these shortcomings, many variants of the EM algorithm have been proposed in the

literature. Two popular versions, which are also implemented in flexmix, are stochastic EM

(SEM) and classification EM (CEM). They add an additional step between the expectation

and maximization step, in which the estimated a posteriori probabilities are used to assign

each observation to exactly one component, either in a stochastic or deterministic way. For

further details, refer to the literature.

The number of components for estimation is fixed, but the number of components can be

chosen according to the AIC criterion comparing FMMs with different number of components.
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D Descriptive Statistics

Table 9: Descriptive statistics of the whole sample

Variable Minimum Mean Maximum

duration of the contract until
01/01/2005 (in years)

0 8.60 35

insurance sum for disability
(w/o factor)

0 60, 315 230, 082

factor 1 3 5
insurance sum for death 0 7, 712 51, 130
insurance sum for hospital per
diem

0 15 65

cost of claims for disability 0 1, 930 1, 003, 953
cost of claims for death 0 59 96, 500
cost of claims for hospital per
diem

0 4.8 18, 630

sample size n = 957, 506. All figures for sums and costs are in Euro.
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