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1 Introduction

Since Akerlof (1970), the consequences of asymmetric information, in particular adverse se-

lection and moral hazard, have been explored in a vast body of research. The initial gap

between the theoretical developments and empirical studies of asymmetric information has

recently become narrower. In particular, insurance markets have proved a fruitful and produc-

tive field for empirical studies, for two reasons. First, the data are well-structured: insurance

contracts are usually highly standardized; they can be described completely by a relatively

small set of variables; and data on the insured person’s claim history, i.e., the occurrence of

claims and the associated costs, is stored in the database of an insurance company. Second,

insurance companies have hundreds of thousands or even millions of clients and therefore

the samples are sufficiently large to conduct powerful statistical tests. The markets for au-

tomobile insurance, annuities and life insurance, crops insurance, as well as long-term care

and health insurance provide large samples of standardized contracts for which performances

are recorded and are well suited for testing the theoretical predictions of insurance theory.

Chiappori and Salanié (1997) provide a detailed justification for using insurance data to test

contract theory. Cohen and Siegelman (2010) present a comprehensive overview of approaches

for testing for adverse selection in insurance markets, covering a large number of empirical

studies in different insurance branches.

In statistical terms, the notion of asymmetric information implies a positive (conditional)

correlation between coverage and risk. Several different methods how to test for asymmetric

information have been proposed in the literature. In this paper, we apply an array of such

tests to detailed contract-level data from the German car insurance market.

Our study contributes to the existing literature in several respects. First, we present the

first study analyzing the German car insurance market. The German car insurance market is

the largest in Europe and therefore for many insurance companies the most important sales

market for their insurance policies. We had unique access to the data set of one of the largest

insurance companies in the field of automobile insurance in Germany.
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Second, the literature has reached an almost complete consensus that asymmetric infor-

mation is not prevalent in automobile insurance. Our analysis shows that this finding does

not hold in general; in particular, we show that the institutional arrangements of a market

and the structure of the contracts have a great influence on whether the insureds have an

informational advantage that the can possibly exploit. Because of a special arrangement that

holds in the car insurance in Germany, we can show that the extent of asymmetric information

depends on the specific kind of risks which is covered.

Third, we compare several tests for asymmetric information that have been proposed in the

literature. Chiappori and Salanié (2000) propose tests for the positive correlation property,

Dionne et al. (2001) use a two stage approach and Kim et al. (2009) modify a multinomial

approach. Most studies only apply a selection of these tests. We apply all tests on the same

data set. We find that they give consistent results, not in a statistical but in a qualitative

sense: They all give the same answer to the underlying question of whether there is asym-

metric information in a particular market. The tests we use are based on different statistical

strategies, i.e., they translate the formal definition of asymmetric information differently into

a statistical framework. Our finding that these tests deliver robust results suggests that the

choice of a particular parametric method is only of secondary importance; the more important

aspect is whether the institutional arrangements are taken into account when the tests are

interpreted (as argued above).

Finally, by applying the framework of Chiappori et al. (2006) we can also test (i) whether

consumers know their loss distribution; (ii) whether in this market the non-increasing profit

assumption holds, i.e., whether contracts with higher coverage earn not higher profits; and,

most importantly, we can test (iii) whether some form of generalized positive correlation

property holds (which is also valid when there are differences in risk preferences). The first

two statements are interesting in their own right (although they serve as assumptions for

the last one). Specifically, test (i) addresses an important practical question in insurance

economics: Can the insureds correctly estimate their loss distribution or do they overestimate
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or underestimate their risk? Test (ii) provides empirical evidence on the structure of the

German car insurance market: Our results show that the non-increasing profit condition

holds, which indicates that there was strong competition among insurance firms in the period

for which we observe our data. This finding is in line with informal descriptions of this

particular market that we discuss in section 3.

The rest of the paper is structured as follows. Section 2 outlines the theory of asymmetric

information and summarizes the empirical literature relevant for our paper. Section 3 describes

the institutional arrangements that govern car insurance in Germany and the structure of this

specific insurance market. In section 4, we describe the data set. In section 5, we review briefly

the parametric tests used in this field and present the results for our data set. In section 6,

we introduce the generalized positive correlation property and some related tests and present

the results. Final remarks and conclusions are contained in Section 7.

2 Asymmetric Information in Insurance Markets: Theory and

Evidence

In their seminal paper Rothschild and Stiglitz (1976) introduce the notion of adverse selection

in insurance markets, which has since then been extended in many directions.1 In the basic

model, the insureds have private information about the expected claim, exactly speaking

about the probability that a claim with fixed level occurs, while the insurers do not have

this information. Thus there are two groups with different claim probabilities, the “bad” and

“good” risks. The agents have identical preferences which are moreover perfectly known to

the insurer. Additionally, perfect competition and exclusive contracts are assumed. Exclusive

contracts mean that an insured can buy coverage only from one insurance company. This

allows firms to implement nonlinear (especially convex) pricing schemes which are typical

under asymmetric information. In this setting, insurance companies offer a menu of contracts

1For a detailed survey on adverse selection and the related moral hazard problem, see Dionne, Doherty and
Fombaron (2000) and Winter (2000), respectively.
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in equilibrium: a full insurance which is chosen by the “bad” risks and a partial coverage

which is bought by the “good” risks. In general, contracts with more comprehensive coverage

are sold at a higher (unitary) premium.

Clearly, one expects a positive correlation between “risk” and “coverage” (conditional on

observables). Since the assumptions in the Rothschild and Stiglitz model are very simplistic

and normally not fulfilled in real applications, an important question to address is how robust

this coverage-risk correlation is. Chiappori et al. (2006) show that the positive correlation

property extends to much more general models under a suitably defined notion. In particular,

the notion of positive correlation is generalized in this context. On competitive markets,

this property is also valid in a very general framework entailing heterogeneous preferences,

multiple level of losses, multidimensional adverse selection plus possible moral hazard and

even non-expected utility theory.2 In the case of imperfect competition, some form of positive

correlation must hold if the agent’s risk aversion becomes public information. In the case of

private information the property does not necessarily hold (see Jullien et al. (2007)).

While adverse selection concerns “hidden information”, moral hazard deals with “hidden

action”. Moral hazard occurs when the expected loss (accident probability or level of damage)

is not exogenous, as assumed in the adverse selection case, but depends on some decision or

action made by the insured (e.g., effort spent to prevent a damage) which is neither observable

nor contractible. Higher coverage leads to decreased effort and therefore to higher expected

loss. Thus, moral hazard also predicts a positive correlation between coverage and risk.

To summarize, the theory of asymmetric information on insurance markets predicts a pos-

itive correlation between (appropriately defined) “risk” and “coverage”, a prediction which

is quite robust across different theoretical models. Nevertheless, there is one important dif-

ference: Under adverse selection, the risk of the potential insured affects the choice of the

2The generalized correlation approach, which we employ in our empirical analysis, is also consistent with
recent extensions of the asymmetric information framework for insurance markets, such as differences in risk
preferences (see, for example, Finkelstein and McGarry, 2006, or Fang et al. 2008). This approach allows for
differences in risk aversion and holds if the market is competitive, which as we argue in the next section, was
the case for the German car insurance market in the period we study.
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contract, whereas under moral hazard the chosen contract influences behavior and therefore

the expected loss. However, there exists reversed causality in both cases.3 It seems that the

empirical insurance literature has concentrated on testing for adverse selection whereas the

moral hazard aspect has received only minor attention; see, inter alia, Cohen and Siegelman

(2010).

In order to test for asymmetric information, the researcher needs to have access to the same

information which is also available to the insurer (and used for pricing). The theory of adverse

selection predicts that the insurance company offers a menu of contracts to indistinguishable

individuals. Individuals are (ex ante) indistinguishable for the insurer if they share the same

characteristics. Therefore the positive risk-coverage correlation is valid only conditional on

the observed characteristics. In general, different classes of observationally equivalent individ-

uals will be offered different menus of contracts with different prices according to their risk

exposure.4 The mechanisms described above are valid only within each class.

Despite the scarcity of data sets in empirical contract theory, the automobile insurance

market has been analyzed extensively. Amongst others, automobile insurance markets in

France (Salanié and Chiappori (2000, 2006) and Richaudeau (1999)), Israel (Cohen (2005)),

Canada (Dionne et al. (2001)), Korea (Kim et al. (2009)), Japan (Saito (2009)) and the

Netherlands (Zavadil (2011)) have been analyzed. In one of the first studies, Puelz and

Snow (1994) confirm the existence of asymmetric information, but Dionne et al. (2001) show

that this might be due to misspecification of their model. In general, there is a tendency

to confirm absence of asymmetric information, e.g., Salanie and Chiappori (2000), Kim et

al. (2009), Dionne et al. (2001) and Zavadil (2011). Evidence for asymmetric information

has been found only in data from Israel, and only for experienced drivers, but this result

can be contributed to a special institutional feature of this market: insurance companies in

Israel cannot gather information about the driving history of their new customers. This gives

3To disentangle moral hazard from adverse selection is a difficult but important problem in the empirical
literature. An early attempt is Dionne et al. (2004); for an overview of different strategies see Cohen and
Siegelman (2010).

4For the theory of risk classification under asymmetric information see Crocker and Snow (2000).
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consumers who change their insurer some advantage. The empirical analysis of the German

car insurance market also suggests that institutional arrangements matter when it comes to

asymmetric information on insurance markets.

3 Automobile Insurance in Germany

Like in many other countries, a third-party vehicle insurance is mandatory for all vehicles in

Germany. This is the so called KFZ-Haftpflicht, a compulsory liability insurance that covers

damage inflicted to other drivers and their cars. In addition, insurance companies offer two

types of non-compulsory coverage for damages to the own car. The first one is called Teilkasko

(TK), the second Vollkasko (VK).5 The first (partial) type of non-compulsory insurance,

TK, covers own damages and losses caused by theft, natural disasters (storm, hail, lightning

strike, flood), collusion with furred game and so on. The second (comprehensive) type of

non-compulsory insurance, VK, covers accidental damage on the own car, even if caused by

oneself, and damages caused by vandalism of strangers. For both types, the insured can choose

a deductible.

In the German car insurance, there is also a uniform experience rating system (Schaden-

freiheitsrabatt) which, however, applies only to the compulsory liability insurance and to VK

but not to TK. The number of years without accident is counted separately for the two types

(compulsory and VK) and according to these numbers every insured is divided into a class

(Schadensfreiheitsklasse). which is associated with a bonus coefficient, bt, which serves as a

proxy for past experience. For any year t, the premium is defined as the product of a base

amount and this coefficient. The base amount can be set freely by the insurance companies

according to their risk classification conditional on characteristics of the insured (such as age,

sex, profession, location) but it cannot itself be related to past experience. Suppose the bonus

5The term Kasko is derived from the Spanish word casco, which denotes the hull of a ship, inter alia. The
German compounds nouns terms Teilkasko and Vollkasko thus refer to partial and comprehensive coverage of
damages to the own car, respectively. We prefer not to translate these terms but use the short-hands TK and
VK.
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Table 1: An overview of the German car insurance market in 2008

“Haftpflicht” “Teilkasko” “Vollkasko”

number of insured cars in million 39.69 12.6 20.76
number of claims in million 2.57 1.30 3.43
claims expenditure in billion Euro 9.22 0.95 5.00
average claim in Euro 3, 600 730 1, 460

source: GDV (2010).

coefficient is bt at the beginning of the tth period. Then the occurrence of an accident during

the period leads to a categorization into another class and, for example, an increase of 25

percent at the end of the period (i.e., bt+1 = 1.25bt), whereas an accident-free year leads to

a reduction of the coefficient according to the new class. Additionally, the coefficient is to be

restricted to lie between 230 % and 30 % in the compulsory insurance and between 125 % and

30 % in the VK non-compulsory insurance.

In 2009, the size of German motor insurance markets was about 20 billion Euro. 39.7

million cars were covered by the compulsory liability insurance; this is thus the total number

of registered cars. A detailed overview of key figures for the year 2008 is given in Table 1.

In 2009 the premium income was 20, 057 million Euro and expenditures for claims were

19, 420 million Euro. There are 104 companies in the market competing for contracts, thus the

marker is broader market than in many other countries in western Europe. A very important

statistic for insurance companies is the so called “combined ratio”, cost and claims divided

by the premium income. This figure was in the last years about 100 %, in 2008 and 2009

the industry average was slightly above 100 %. A combined ratio over 100 indicates that the

insurer is making an underwriting loss. The reason is that in the last five years there was a

price battle in this market with cutting rates in each year leading to insurance rates similar

to the level of those of the early 1980s (see Bloomberg (09/06/2010)). Between 2004 and

2009, the average premium decreased by 15.9 % (see GenRe (2010)). A detailed analysis of

the German car insurance and the prevailing price war in the last years is given in GenRe
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(2010). While most insurance markets show a tendency towards oligopolies, in the last years

the German car insurance market was very competitive, close to perfect competition as the

figures above and recent market surveys indicate.6 We study this structure of this market in

section 6 by testing the non-increasing profit property, described above (this property holds in

most settings of competitive markets but is more general than a simple null-profit condition).

4 The Data Set

For our analysis we had access to the database of the insurance contracts of a major company

in Germany. We analyzed the data for the TK and VK (partial and comprehensive) non-

compulsory insurance separately, due to the different scopes of indemnity and liability rules

described above. In fact, these institutional differences are important for the interpretation

of the results. We analyzed both the whole portfolio of contracts and a subsample restricted

to “young drivers”7. The concentration on beginners enables us to rule out learning effects

with respect to individual risk, which might arise over time on both sides of the market – the

insured and the insurance company.

As the database is quite large, we restrict our analysis in both cases to random samples

from the universe of all contracts.8 We use data for the year 2009. The data set contains

information about each contract for a full contract year. The sample size in the TK is

n = 5, 321 for the whole portfolio and n = 5, 647 for the beginners, in the VK n = 7, 200

resp. n = 6, 466 for the beginners. The level of deductibles in the TK are 0, 150, 300 and

500 Euro and 0, 300, 1, 000 and 2, 500 Euro in the VK. As 2, 500 Euro is very seldom chosen

we omit this level of deductible. In the TK case we use the number of claims exceeding 500

6GenRe (2010), Bloomberg (2009), Reuters (2009), Reuters (2010), and Handelsblatt (2010) provide infor-
mation on the German car insurance market, especially on the existence of a price war and on the toughness
of competition in this market over the past few years.

7In actuarial usage, the expression “young driver”refers not to the age of the driver but to the driving
experience.

8For the analysis of the whole portfolio, the random sample was drawn from the set of all contracts which
were signed after January 1, 2007. As there are changes in the product menu and contract conditions from
time to time, this ensures that the contracts are comparable and differ only in the chosen deductible and not
with regard to other contract conditions.
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Euro and in the VK the number of claims exceeding twice the highest level of deductible, i.e.,

2 ·1, 000 = 2, 000 Euro as a measure for the ex post risk. In the TK there is no incentive not to

claim accidents as there is no bonus / malus coefficient. In the VK case there is an incentive

not to claim all accidents as accidents lead to a worsening of the the risk classification and

therefore to a higher premium. But we argue that claims higher than 2, 000 Euro are filed

in any case.9 In general, as accidents below the deductible are not reported to the insurance

company and cannot be observed we have to restrict to claims being higher than certain

thresholds as mentioned above. Otherwise also in the absence of asymmetric information a

positive correlation would be possibly detected.

A detailed statistical analysis of the chosen deductibles and the number of accidents ac-

cording to the chosen deductibles for both the whole portfolio and the novice drivers broken

down into the TK and VK types of non-compulsory insurance is provided in Tables 2 to 5.

These tables show the typical pattern for the distribution of claims in the car insurance: Most

insurees do not file any claim; more claims than two are very seldom.

Our data set stems from the company with one of the highest market shares, which is also

diversified across all regions in Germany, across all occupations and ages. The data should

therefore be fairly representative of whole market for automobile insurance in Germany.

5 Testing for Asymmetric Information

5.1 Statistical Procedures

In this section, we present several different parametric methods that have been proposed

in the literature to test for asymmetric information. In an econometric sense, we want to

test whether there is a positive correlation between risk and coverage. We concentrate on

parametric tests which are well established in this field and can be implemented by most

9At this level all accidents are filed, as the reimbursement from the insurance company for the damage is in
any case higher than the discounted increase in premiums according to internal calculations of the insurance
company (personal communication with actuaries). Another possibility would be to use the approach of Dionne
and Gagné (2001) or a Heckman selection bias model, but both require additional assumptions and / or
variables.
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Table 2: Number of accidents according to the choice of deductible in the TK for the whole
portfolio

level of deductible / number
of accidents

0 1 2 sum

0 552 (0.914) 50 (0.083) 4 (0.003) 604
150 4349 (0.953) 208 (0.046) 7 (0.001) 4564
300 107 (0.964) 4 (0.036) 0 (0.000) 111
500 40 (1.00) 0 (0.000) 0 (0.000) 40

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.

Table 3: Number of accidents according to the choice of deductible in the VK for the whole
portfolio

level of deductible / number
of accidents resp. share

0 1 2 sum

0 54 (0.982) 1 (0.018) 0 (0.000) 55
150 486 (0.972) 14 (0.028) 0 (0.000) 500
300 5182 (0.977) 119 (0.022) 2 (0.001) 5303
500 962 (0.969) 31 (0.031) 0 (0.000) 993
1000 129 (0.985) 2 (0.015) 0 (0.000) 131

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.

Table 4: Number of accidents according to the choice of deductible in the TK for the novice
drivers

level of deductible / number
of accidents

0 1 2 sum

0 377 (0.887) 44 (0.103) 4 (0.010) 425
150 4723 (0.940) 288 (0.057) 15 (0.003) 5026
300 148 (0.961) 6 (0.039) 0 (0.000) 154
500 40 (1.00) 2 (0.000) 0 (0.000) 40

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.
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Table 5: Number of accidents according to the choice of deductible in the VK for the novice
drivers

level of deductible / number
of accidents resp. share

0 1 2 3 sum

0 3 (1.000) 0 (0.000) 0 (0.000) 0 (0.000) 13
150 205 (0.995) 1 (0.005) 0 (0.000) 0 (0.000) 206
300 4619 (0.964) 167 (0.035) 6 (0.001) 1 (0.000) 4793
500 1194 (0.954) 56 (0.045) 2 (0.001) 0 (0.000) 1252
1000 129 (0.960) 8 (0.040) 0 (0.000) 0 (0.000) 202

Notes: Figures in brackets denote the relative frequency of the number of accidents for the corresponding
level of deductible.

statistical software packages.10 In the following, the (row) vector X denotes the exogenous

variables which are used for risk classification by the insurance company, Y denotes the type

of the chosen contract, e.g., the chosen deductible, and Z measures the damage risk. Risk is

measured as ex post risk, e.g., by the number of accidents or the damage payments by caused

the insured. All variables are defined at the level of individual contracts which are indexed

by i (the index is omitted if there is no confusion).

5.1.1 Unrelated Probit regressions

The first approach is to define two Probit models, one for the choice of the coverage Yi

(either basic coverage or comprehensive coverage – that is, TK or VK) and the other for the

occurrence of an accident Zi (either no accident or at least one accident with fault): Yi = 1(Xiβ + εi > 0)

Zi = 1(Xiγ + ηi > 0)
(5.1)

where εi and ηi are independent standard normal errors, and β and γ are coefficient vectors

(as columns). First, these two Probit models are estimated independently and then the

generalized residuals ε̂i and η̂i
11 are calculated. These are required for the following test

10Spindler and Su (2011) present a new nonparametric test for asymmetric information which is, however,
not straightforward to implement.

11For example, the generalized residual ε̂i estimates E (εi|Yi) . See Gourieroux et al. (1987) for the definition
of generalized residuals in limited dependent models and applications.
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Table 6: Description of the variables

name description number of categories
“Teilkasko” “Vollkasko”

commitment to work-
shop

yes/no 2 2

profession categorial 9 9
region categorial 6 4
type of vehicle categorial 6 6
no-claims bonus bonus / malus coeffi-

cient; categorial
– 8

kilometers per year categorial 9 9
age of car when being
bought

categorial 8 7

lodging of the car over
night combined with
housing

categorial 12 12

driver age of the driver and po-
tential drivers – catego-
rial

18 25

keeper of the car categorial 5 5
payment method categorial 6 6
bonus yes/no 2 2
protection against up-
grading

yes /no, in the case
of an accident the no-
claims bonus is not
raised

– 2

deductible different possible values 4 5
number of accidents discrete
payment for damages continuous

Note: For the young drivers the number of categories is slightly different, i.e., smaller, as they have a little bit lower variation in their
characteristics.
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statistic

Wn =
(
∑n

i=1 ε̂iη̂i)
2∑n

i=1 ε̂
2
i η̂

2
i

. (5.2)

Under the null of conditional independence, cov(εi, ηi) = 0 and Wn is distributed asymptoti-

cally as χ2(1), as shown by Gourieroux et al. (1987).

Chiappori and Salanié (1997, 2000) introduced this approach. One drawback is that informa-

tion is lost as Y and Z have to be defined as binary variables. This loss of information might

disguise asymmetric information as indicated in Spindler and Su (2011).

5.1.2 Bivariate Probit regression

A related approach is to estimate a bivariate Probit model in which εi and ηi are distributed

as bivariate normal with correlation coefficient ρ which hast to be estimated, and then to test

whether ρ = 0 or not. In order to test this hypothesis the Wald-, Score- or LR-test can be

used.

5.1.3 Two-stage regressions

Multinomial approach (Kim et al. (2009))

Depending on the number of categories of the choice variable Y , this procedure varies a little

bit. In the case of a dichotomous Y in the first stage, a bivariate Probit regression of the

choice of contract on the exogenous variables, i.e., the variables used for risk classification, is

run. The Probit equation is of the form

Yi = 1(Xiβ + εi > 0) (5.3)

with εi iid and standard normal. Then the generalized residuals ε̂i are obtained:

ε̂i =
φ(Xiβ̂)

Φ(Xiβ̂)(1− Φ(Xiβ̂))

[
Yi − Φ(Xiβ̂)

]
, (5.4)

where φ and Φ are the density and cumulative distribution functions of the standard normal

distribution, respectively, and β̂ is the estimated coefficient vector. As an unexplained proba-
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bility of making a corresponding coverage choice, ε̂i captures the extent of private information

in the binary choice of Yi, conditional on the observables.

In the case of more than two categories of Yi, an ordered multinomial choice model is applied.

For example Yi is equal to 0 if policyholder i chooses no optional coverage (i.e., liability only),

1 for some optional coverage and 2 for all optional coverage / full coverage. For the kind of

insurance we will analyze (separately for TK and VK) Yi is equal to 0 if someone chooses the

highest possible deductible, equal to 1 if someone chooses some medium deductible and 2 for

no deductible.

A multinomial choice model is given by

Yi =


0 if Y ∗

i ≤ µ1

1 if µ1 < Y ∗
i ≤ µ2

2 if Y ∗
i ≤ µ2

(5.5)

where Y ∗
i denotes a latent variable representing the policyholder’s utility associated with

insurance coverage, and µ1 and µ2 are unknown thresholds for observed categories. The

ordered multinomial choice model can be estimated using an ordered Probit regression.

With an ordered multinomial variable Yi ∈ {0, 1, 2}, the above procedure is not directly

applicable. In order to obtain the unexplained probabilities equivalent to the one in the binary

choice model, the choice of three contracts is split up in two binary choices.12 Therefore they

define two auxiliary variables Y 1
i and Y 2

i . Y 1
i = 0 if Yi = 0 and Y 1

i = 1 if Yi ∈ {1, 2}.

Accordingly, Y 2
i = 0 if Yi ∈ {0, 1} and Y 1

2 = 1 if Yi = 2. Then the generalized residuals are

calculated by

ε̂1i =
φ(Xiβ̂ − µ̂1)

Φ(Xiβ̂ − µ̂1)(1− Φ(Xiβ̂ − µ̂1))

[
Y 1
i − Φ(Xiβ̂ − µ̂1)

]
(5.6)

ε̂2i =
φ(Xiβ̂ − µ̂2)

Φ(Xiβ̂ − µ̂2)(1− Φ(Xiβ̂ − µ̂2))

[
Y 2
i − Φ(Xiβ̂ − µ̂2)

]
(5.7)

12The exposition follows Kim et al. (2009), also the interpretation of the residuals below follows their pre-
sentation.
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with β̂ the estimated coefficient vector and µ̂1, µ̂2 the estimated thresholds for observed

categories.

ε̂1i and ε̂2i can be interpreted as the unexplained probabilities associated with Y 1
i and Y 2

i .

For example, ε̂1i estimates the unexplained probability of choosing any optional coverage

(Yi ∈ 1, 2) over no optional coverage (Yi = 0). ε̂2i can be interpreted in an analogous way.

If we include these two residuals in the ”accident equation“in the 2nd step as regressors, the

regression coefficient of ε̂1i captures the effect of information asymmetry in the choice between

no optional coverage (Yi = 0) and some optional coverage (Yi = 1) and the coefficient of ε̂2i

captures the effect of information asymmetry in the choice between some optional coverage

(Yi = 1) and all optional coverage (Yi = 2).

Therefore in a second step we run a negative binomial regression or alternatively Poisson

regression of the number of accidents Zi in the contract year on the exogenous regressors

including the generalized regressors calculated according to 5.6 and 5.7. The distribution of

the number of accidents Zi in the case of the negative binomial regression is given by

P(Zi) =
Γ(Zi + 1

σ2 )
[
σ2 exp(Xiβ̂0 + ε̂iβ̂ε)

]Zi
Γ( 1

σ2 )Γ(Zi + 1)
[
1 + σ2 exp(Xiβ̂0 + ε̂iβ̂ε)

]Zi+ 1

σ2
i

(5.8)

with Γ the Gamma function and β̂0, β̂ε the estimated coefficient vectors. ε̂i is defined as

(ε̂1i , ε̂
2
i ).

Statistically significant and positive components of β̂ε indicate the existence of asymmetric

information between the parties.

As a two stage nonlinear estimation procedure is used, one has to apply the Murphy-Topel

standard error estimates in the second stage (Murphy and Topel (1985)). As in the second

regression regressors are included which are estimated themselves in the first step, one has to

account for this additional source of uncertainty and correct the induced bias in the variance.

An adapted version which is tailored to the situation above can be found in the appendix of

Kim et al. (2009).
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Allowing for nonlinearities (Dionne et al. (2001))

Dionne et al. (2001) choose the following procedure. In the first step, Ê(Z|X) is computed

by the estimation of a negative binomial regression of the distribution of accidents by using

basic rating variables of the insurer as regressors. In the second step, a Probit model with

the chosen deductible as independent variable is run. The exogenous variables are the same

as in the first step, plus the expected number of claims estimated from the first step and the

actual number of accidents. Thus, the regressor Ê(Z|X) in the second equation controls for

possible nonlinearities.

In one of the first empirical studies, Puelz and Snow (1994) consider an ordered logit

formulation for the deductible choice variable and find strong evidence for the presence of

asymmetric information in the market for automobile collision insurance in Georgia. But

Dionne et al. (2001) show that this correlation might be spurious because of the highly con-

strained form of the exogenous effects or the misspecification of the functional form used in

the regression. They propose to add the estimate Ê(Zi|Xi) of the conditional expected value

of Zi given Xi as a regressor into the ordered logit model to take into account the nonlinear

effect of the risk classification variables, and by accounting for this, they find no residual

asymmetric information in the market for Canadian automobile insurance.13

5.2 Results

In this section, we present our results. In order to characterize the robustness of the inferences

on asymmetric information that a researcher might draw for a given market, we apply all the

parametric tests presented in the previous section. We apply them separately for the TK and

VK types of insurance, and for both samples (whole portfolio and young drivers). The results

for the whole portfolio are summarized in Table 7, the results for the novice drivers in Table 8.

As the results for both groups are, perhaps surprisingly, relatively similar, we first discuss the

results for the whole portfolio in some detail before comparing the results for both samples.

13Chiappori and Salanié (2000) also estimated a nonparametric model which confirmed the results from their
parametric models.
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In the TK, the picture seems to be clear-cut. Both tests building up on the two Probits and

the bivariate Probit reject the null hypothesis of conditional independence at a significance

level of α = 0.01. When using a two-step estimation procedure, the number of accidents has

a significant influence in predicting the choice of deductible (β̂accidents = 0.517). In order to

take into account nonlinearities, we also include the expected number of accidents, additional

to the number of accidents. The expected number of accidents is estimated according to a

Poisson regression in which all variables used for risk classification by the insurance company

are included. We also applied a Negative Binomial regression, but as the results are similar

to the Poisson regression and as we find no indication of overdispersion, we omit them here.

While in Dionne et al. (2001) the addition of the expected number of accidents made the

coefficient of the number of accidents insignificant, our results are not changed so that the

actual number of accidents remains a significant predictor of the choice of the deductible.

Therefore, the two step estimation confirms the existence of asymmetric information in the

TK as well. The multinomial approach shows that there is no asymmetric information in the

choice between the highest possible deductible and some lower deductible. This information

is contained in the coefficient of ε1. In the choice between some deductible and full insurance,

presumably the most important decision, the generalized residual ε2 has a significant positive

influence which again indicates asymmetric information.

The interpretation of the results for comprehensive coverage (VK) is similar but the esti-

mates are quite different, as can be seen in Table 7. The estimated coefficient of ρ is clearly

not significantly different from zero and the test statistic W using the generalized residuals

does not reject conditional independence on a significance level α = 0.01. In the two step esti-

mation, the number of accidents is not a significant variable, regardless of taking into account

nonlinearities. Also the multinomial approach shows no indication of asymmetric information

if one examines the detailed choice between certain levels of deductible. The results for the

young drivers are interpreted in an analogous way. A comparison of Table 7 and 8 shows that

the pattern for the whole portfolio and the novice drivers is surprisingly similar and robust.

18



To sum up, we detect the existence of asymmetric information in the TK, but not in the

VK, for both experienced and young drivers.

Table 7: Results for the whole portfolio

Test Procedure TK VK

Two Probits W = 21.9 W = 0.01
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence (α = 0.01, 0.05)

Bivariate Probit ρ = 0.286 (0.049) ρ = −0.1403 (0.126)
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence (α = 0.01, 0.05)

2 step estimation β̂accidents = 0.517∗,∗∗ (0.083) β̂accidents = 0.036 (0.094)
(Dionne et al.
(2009)) {

β̂accidents = 0.509∗,∗∗(0.083)

β̂exp acc = 1.4(1.098)

{
β̂accidents = 0.019(0.095)

β̂exp acc = 1.725(1.090)

Multinomial ap-
proach

βε̂1 = 1.721 (2.038/2.056) βε̂1 = 0.338 (0.332/0.332)

βε̂2 = 0.352∗,∗∗ (0.079/0.149) βε̂2 = 0.053 (0.386/0.386)

Notes: *, ** indicate significance at the 1 % and 5 %, respectively.

Figures in brackets indicate the standard errors, and for the multinomial approach
additionally the Murphy-Topel standard errors.
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Table 8: Results for novice drivers

Test Procedure TK VK

Two Probits W = 15.4 W = 3.86
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence for α = 0.01 and re-
ject for α = 0.05

Bivariate Probit ρ = 0.227 (0.066) ρ = −0.0101 (0.108)
reject conditional indepen-
dence (α = 0.01, 0.05)

do not reject conditional inde-
pendence (α = 0.01, 0.05)

2 step estimation β̂accidents = 0.388∗,∗∗ (0.075) β̂accidents = −0.123 (0.076)
(Dionne et al.
(2009)) {

β̂accidents = 0.386∗,∗∗(0.076)

β̂exp acc = 0.640(1.375)

{
β̂accidents = −0.125(0.076)

β̂exp acc = 1.306(1.871)

Multinomial ap-
proach

βε̂1 = 0.1241 (0.2676) βε̂1 = 0.038 (0.167)

βε̂2 = 0.4136∗,∗∗ (0.074) βε̂2 = −1.785 (4.086)

Notes: *, ** indicate significance at the 1 % and 5 %, respectively.

Figures in brackets indicate the standard errors, and for the multinomial approach
additionally the Murphy-Topel standard errors.

6 The Generalized Positive Correlation Property

6.1 Statistical Procedures

As mentioned earlier, Chiappori et al. (2006) extend the positive correlation property (for suit-

ably defined notions) to much more general models, entailing heterogeneous preferences, mul-

tiple level of losses, multidimensional adverse selection, plus possibly moral hazard and even

nonexpected utility. They generalize the notion of positive correlation between risk and cover-

age. The most important assumptions they make are the “realistic expectations”assumption

and the “non-increasing profit”(NIP) assumption. Realistic expectations means that when

agents choose a contract, they correctly assess their accident probability and loss distribution.

With other words, they know their loss distribution. The NIP assumption states that if a
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contract C2 covers more than a contract C1, then the expected profits generated by C2 are

not higher than profits under C1: π(C2) ≤ π(C1).

These assumptions (or rather specific predictions that follow from them, as explained

below) can be tested with our contract data. The results are of interest in their own right, as

they answer questions related to the market structure and to the self-assessment of drivers.

We present only the special case for contracts with deductibles. In the following, C1 and C2

are contracts with straight deductibles, where C2 covers more than C1, i.e., the deductible

for contract 1 is higher, d1 ≥ d2. P1, P2 denote the corresponding premia, R1, R2 denote

the indemnities for every possible claim under each contract and can be approximated by loss

minus the deductible in our case.

Under the null that the insureds know their loss distribution, i.e., have realistic expecta-

tions, the following property should hold in the case of straight deductibles

P2 − P1 ≥ q1(d1 − d2)

q1 denotes the probability that the loss L is above the deductible d1 under C1: q1 = Prob(L >

d1).

The condition of NIP can be formulated in this special case as

P1/(1 + t)− P2/(1 + t) ≥ (1 + λ)(R1 −R2)

with t the tax rate and λ the load factor.

Finally, under the two assumptions mentioned above (and some other weak conditions) a

generalized positive correlation property holds which in our case can be written as14

(1 +K)(E2 − E1) ≥ d2(q2 − q1).

K is defined as (1 + t)(1 + λ) − 1, Ei denotes the expected loss under contract i. This

can be approximated by the payment of compensation in the case of an accident plus the

14Chiappori et al. (2006) give further explanations and an intuition for the result.
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corresponding deductible. qi is the probability of a claim under contract Ci.

It is important to mention that the inequalities above are only valid for individuals with the

same observables X and therefore have to be checked for all cells separately.

In order to test if these inequalities hold, one forms a test statistic T for each cell. In the case

of realistic expectations T is given by

T = P2 − P1 − q1(d1 − d2)

for the NIP

T = P1/(1 + t)− P2/(1 + t)− (1 + λ)(R1 −R2)

and finally for the positive correlation property

T = (1 +K)(E2 − E1)− d2(q2 − q1).

As these test statistics are calculated for every cell, we get an empirical distribution for each

test statistic. Under the null hypothesis that T (X) = 0 for all X, these numbers should be

distributed as a standard normal distribution, N(0, 1). There are several ways to come to

a test decision. One way is to calculate the standardized mean and to conduct a t-test of

the hypothesis that the mean is different from zero. Additionally, we report the share of the

number of positive signs of our test statistic as this provides additional information on the

dispersion of the distribution. As our data cover several levels of deductibles in the TK and

VK types of insurance, we compare them pairwise.

6.2 Results

In this section, we present the results of the above tests for TK and VK. We applied the tests

to the whole portfolio of contracts in the year 2009. In order to save space, we only present

the results if one of the deductibles involved in the comparisons contains at least more than

5 % of the contracts of the total portfolio.

The first question to address is whether the customers have realistic expectations. Our
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results show that for both the TK and VK and for the different choices of deductibles, the null

can be rejected at any reasonable significance level and therefore the customers have realistic

expectations about their true loss distribution.

Table 9: Realistic expectations - VK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

300 150 6, 843 1.90 157.55 0.998
500 150 6, 595 2.19 178.23 1.000
500 300 8, 730 1.89 176.43 0.999

coverage in Euro. sample size appr. 2.3 mio.

Table 10: Realistic expectations - TK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

150 0 1, 880 1.72 74.68 0.999

coverage in Euro. sample size appr. 1.2 mio.

The second question to be addressed is whether the non-increasing profit assumption

holds. This is also interesting with regard to market structure and strength competition on

this market. Tables 11 and 12 show that the mean is significantly different from zero and

therefore the null can be rejected, so the non-increasing profit property holds. However,

the share of observations with positive sign falls below 50 %. Therefore, the situation is not

completely clear as the value of the test statistic alone suggests, but nevertheless we see a

tendency that the NIP assumption is fulfilled.

Finally, we present the results of the general positive correlation tests, summarized in

Tables 13 and 14. For the TK, we can reject the null hypothesis (at a significance level of

1 %) and therefore confirm the result of asymmetric information in this part of the automobile

insurance. The share of cells with positive sign is approximately 75.6 %. This result is in line

with the results we obtained by applying the parametric procedures in the previous section.
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Table 11: Non increasing profit assumption (NIP) - VK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

300 150 6, 843 0.04 3.70 0.38
500 150 6, 595 0.07 5.56 0.44
500 300 8, 730 0.02 2.09 0.62

coverage in Euro. sample size appr. 2.3 mio.

Table 12: Non increasing profit assumption (NIP)- TK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

150 0 1, 880 0.06 2.57 0.450

coverage in Euro. sample size appr. 1.2 mio.

For the VK, the picture is not so clear-cut. The tests confirm the existence of a positive

correlation property. This contradicts the previous section at a first glance. But the number

of cells with positive sign is quite low. For the comparisons of deductibles, the share goes down

to about one fourth – the overwhelming number of cells has a negative sign. This makes it

plausible that despite the value of the test statistic, the positive correlation property does not

hold for most cells. Therefore, the existence of asymmetric information seems to be doubtful

or at least the effect is not strong. Moreover, a detailed look at the cells reveals that the high

value of the test statistics is driven by some cells with a sparse number of observations which

could be classified as outliers.

Summing up, we can confirm that drivers have realistic expectations with regard to their

loss distribution and that in this market (and this period) the NIP condition holds. Moreover,

we show that the generalized positive correlation property holds for TK. For VK the picture

is not so clear-cut. Depending on the chosen test, evidence for VK that this property also

holds is quite weak.
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Table 13: Generalized positive correlation - VK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

300 150 6, 843 0.09 7.56 0.410
500 150 6, 595 0.15 12.26 0.495
500 300 8, 730 0.08 7.45 0.659

coverage in Euro. sample size appr. 2.3 mio.

Table 14: Generalized positive correlation - TK 2009

coverage 1 coverage 2 number of cells std. mean t-statistic share of pos. signs

150 0 1, 880 0.40 17.42 0.756

coverage in Euro. sample size appr. 1.2 mio.

7 Discussion and Concluding Remarks

In this paper, we analyzed a contract-level data set on automobile insurance in Germany.

This market is of interest not only because it is the largest such market in Europe, but also

because particular contractual arrangements allow us to analyze asymmetric information with

respect to the different kinds of risk which are usually covered by car insurance.

Our first conclusion is that in TK (partial insurance), asymmetric information exists.

This is confirmed by the tests in section 5 and 6. By weighing all test results, we would

however deny the existence of asymmetric information in the VK (comprehensive insurance),

or perhaps the effect is very weak compared to the TK. These findings hold for both young

drivers and for the whole portfolio of contracts.

To understand the differences in our findings for these two types of coverage, we must

consider the types of risk that are covered and how filed claims affect the future premium.

The VK covers damages to the own car or own body which are not covered in the TK, in

particular damages in the case of an accident for which the driver is at his own fault. (Damages

to the other party are covered by the Haftpflichtversicherung which we did not analyze in this
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paper.) In contrast to the TK, there is a bonus/malus coefficient in the VK, i.e., an accident

caused by the insured leads to a worsening of this coefficient and thus to a higher premium

in the following years. Thus, there is an incentive in the VK not to file all accidents. We

therefore limited our analysis to claims which are twice as high as the highest deductible, i.e.,

we considered only damages above 2, 000 Euro. Damages of this magnitude are in nearly all

cases filed as a claim, since the reimbursement will be higher than the discounted sum of the

increased future premiums. In the VK, we find no convincing evidence for the existence of

asymmetric information.

When we restrict our analysis to young drivers, i.e., drivers with no driving experience, it

is reasonable to assume that they do not have an informational advantage concerning their

accident probability. This means that in the VK, it is reasonable to rule out adverse selection

and therefore the analysis can be interpreted as a test of moral hazard. But our results show

that there is no positive correlation as predicted by the theory of moral hazard. This finding

might be due to the existence of an experience rating, a deterrent that does not exist in

the TK. If one is not willing to maintain the assumption that young drivers do not have an

informational advantage, then different effects must cancel to produce an insignificant effect,

which is possible but not very likely in our view.

When we consider the whole portfolio of insurance contracts, the pattern is the same.

Drivers have an informational advantage in the TK. The absence of evidence for asymmetric

information in the VK might be explained by the experience rating system: The bonus/malus

coefficient is both a good proxy for the ability and accident history of a driver, and an effective

scheme to induce careful driving.

Going one step further, one could presume that the risks covered by the TK cannot be

influenced by individual behavior to the same extent as the risks covered by the VK. Therefore

one might argue that moral hazard is of minor importance in the TK, in which case the positive

correlation would be driven by adverse selection. This would imply that the insureds are aware

of specific individual risk factors, such as local variation in weather patterns, and choose the
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level of deductible (of full insurance) according to their risk exposure. More research along

these lines would require data on, say, regional variation in risk exposure that is not reflected

in regional premium variation. We leave this issue to future work.

Finally, an important finding we presented in this paper is that the insureds know their loss

distribution, i.e., they have realistic expectations. This rules out the possible explanation that

insureds have different abilities in assessing the risks related to the TK or VK. We can also

conclude that drivers do not over- or underestimate their risk as it is often conjectured. We also

checked the non-increasing profit assumption and found that it is confirmed. Usually insurance

markets are characterized by an oligopolistic market structure, but this result confirms the

informal descriptions of the German car insurance market in the 1990s: In this specific period,

this market seems to have been characterized by almost perfect competition.
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