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Die Stärke einer möglichen Invalidität variiert sehr wahrscheinlich in Subpopulationen. In diesem 
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LATE-Annahmen zu suchen und zu testen. Im Gegensatz zu früheren Testverfahren, kann unser 
Verfahren lokale Verletzungen erkennen. Wir zeigen dies in Simulationen und in zwei Anwendungen.
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1 Introduction

Producing credible estimates of causal effects in empirical research often entails
a heavy reliance on instrumental variables (IVs). IVs, however, have to meet
strong assumptions to be valid. Discussions about threats to these identifying as-
sumptions and approaches to checking their robustness constitute a crucial part
of many empirical papers. Recently, Kitagawa (2015), Huber and Mellace (2015)
and Mourifié and Wan (2017) developed tests that allow the validity of IVs to be
refuted based on necessary conditions in the data. These conditions are gener-
ated by the joint assumptions sufficient to identify local average treatment effects
(LATEs), namely the exclusion restriction, randomization/unconfoundedness and
monotonicity (Imbens and Angrist, 1994; Angrist et al., 1996). The unifying idea
across these three tests is that, given a treatment status, the estimated density of
compliers must be non-negative at any point in the distribution of the outcome
variable; compliers comprise the unobserved subpopulation of individuals whose
treatment status is causally affected by the instrument.
The concept underlying our paper is that the degree to which the LATE assump-
tions are violated may vary across subpopulations that can be defined by observed
characteristics. For example, a direct effect of the instrument on the outcome vari-
able may be large in a relatively small subpopulation but, in the entire population,
watered down to the point at which it can no longer be detected by existing tests.
By reformulating the necessary conditions into a form similar to that employed to
learn the sign of treatment effects, we are able to leverage recent progress in using
machine learning to estimate heterogeneous treatment effects. This heterogeneity
is conceptually restricted to non-negative values if the LATE assumptions hold,
but may take on negative values otherwise.
In recent years, a growing body of research has used machine learning to esti-
mate heterogeneous treatment effects (among others, Tian et al., 2014; Wager and
Athey, 2018; Athey et al., 2019; Künzel et al., 2019; Nie and Wager, 2019). Our
test proceeds in three steps. In the spirit of subgroup testing, we use shallow
regression trees (Breiman et al., 1984) to split the sample along covariate values.
Some of these splits form subgroups, which are promising for finding violations of
the LATE assumptions. We apply a simple selection procedure to identify these.
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Then, we use the double machine learning framework from Chernozhukov et al.
(2018) combined with causal forests developed by Wager and Athey (2018) and
Athey et al. (2019) to estimate the magnitude of the violations in these promising
subgroups. Lastly, we test for local violations of the LATE assumptions using
Bonferroni-corrected critical values. Finding violations in at least one subgroup
casts doubt on the instrument, because we cannot rule out further undetected
violations. Our proposed test procedure can be easily implemented with existing
software packages. Additionally, we provide the R package LATEtest.
We consider a setup with a binary (endogenous) treatment and a binary instru-
mental variable. There are several examples in this framework: for instance, the
Vietnam draft lottery (Angrist, 1990), the preference for mixed-sex children (An-
grist and Evans, 1998) or the Oregon health insurance experiment (Finkelstein
et al., 2012). When we apply our data-driven procedure to detect local violations
of IV validity, we have to assume that the instrument is randomized (or at least
unconfounded conditional on covariates). Randomization (or unconfoundedness)
itself is therefore not testable with our procedure. However, randomization (or
unconfoundedness) is often fulfilled by design in applied work (for instance, in
the Vietnam draft lottery or in the Oregon health insurance experiment), while
the most controversial assumption is the exclusion restriction and to some extent
also monotonicity. We thus have applications in mind in which the researcher is
interested in testing the exclusion restriction and/or monotonicity.
The existing test procedures are, ceteris paribus, more powerful when the overall
share of compliers in the entire population is low, i.e. the instrument is weak on
average. However, applied researchers often rely on strong instruments to avoid
issues associated with weak IVs (Bound et al., 1995), and because a larger share
of compliers may deliver a causal effect with greater external validity. Our test
procedure is more powerful when the share of compliers is low within a subpopu-
lation. That is, our test can have more power asymptotically than existing tests
even if the instrument turns out to be strong on average. The proposed approach
also has advantages over simply using existing IV validity tests within arbitrarily
defined covariate subgroups. It automatically chooses the covariates and covariate
values to partition on, with honest splitting safeguarding the researcher from an
overfitting bias. Researchers can, therefore, credibly demonstrate that they have
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extensively searched for violations of key identifying assumptions.
This paper contributes to the recent and fast growing literature on adapting ma-
chine learning tools to the needs of applied economists who wish to estimate causal
effects and detect and characterize the heterogeneity of these. One strand of the
literature uses tree and forest algorithms to estimate the heterogeneity of treatment
effects (Asher et al., 2016; Athey and Imbens, 2016; Wager and Athey, 2018; Athey
et al., 2019). Belloni et al. (2012, 2014b) and Chernozhukov et al. (2015) present
methods based on the least absolute shrinkage and selection operator (Lasso, Tib-
shirani, 1996) for inference in high-dimensional settings where there may be many
possible instrument or control variables relative to the number of observations.
See also Belloni et al. (2014a) for an overview. Knaus et al. (2020) use Lasso-type
estimators to detect treatment effect heterogeneity in job search programs. In the
presence of instruments that violate the exclusion restriction, Kang et al. (2016)
and Windmeijer et al. (2019) use the Lasso to select valid IVs in linear models.
Wager et al. (2016), Bloniarz et al. (2016) and Athey et al. (2018) improve the
efficiency of average treatment effect estimates in randomized experiments with
Lasso-based balancing.
The rest of this paper proceeds as follows. In the next section, we briefly revisit the
testable implications of IV validity. Section 3 describes our procedure to detect,
select and test local violations of IV validity. In Sections 4 and 5, we provide results
from a simulation study and apply the test to real data. Section 6 concludes.

2 (Local) Violations of LATE

Let the observed outcome Y have support Y and the endogenous treatment have
status D ∈ {0, 1}, where D = 1 indicates treatment, and the binary instrument
Z ∈ {0, 1}. The potential outcomes and treatments are denoted with Y dz and
Dz, where d, z ∈ {0, 1}. Following Imbens and Angrist (1994) and Abadie (2003),
three assumptions are sufficient to identify LATEs in this setup.

Assumption A1. (Exclusion restriction): Y d1 = Y d0 = Y d for d ∈ {0, 1} wp 1.

Assumption A2.a. (Randomization): (Y 11, Y 10, Y 01, Y 00, D1, D0) ⊥ Z.

Assumption A2.b. (Unconfoundedness): (Y 11, Y 10, Y 01, Y 00, D1, D0) ⊥ Z|X.
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Assumption A3. (Monotonicity): D1 ≥ D0 or D1 ≤ D0 wp 1.

Assumption A1 rules out a direct effect of the instrument on the potential out-
comes. Assumption A2.a assumes that Z is jointly independent of the potential
outcomes and treatments. In many applications, Assumption A2.a will hold only
when conditioning on a set of predetermined covariates X. In this case, Assump-
tion A2.b replaces Assumption A2.a. Assumption A3 rules out the existence of
defiers. Without loss of generality, we assume D1 ≥ D0 in the remainder of this
paper, i.e. the instrument is to create an incentive to take up the treatment, and
we assume that this is known a priori to the researcher. Our arguments would
hold symmetrically for negative monotonicity (i.e., D1 ≤ D0).
Let BY be a collection of Borel sets generated from Y . Imbens and Rubin (1997)
show that, under Assumption A1-A3, it must hold for every J ∈ BY that

P (Y ∈ J,D = 1|Z = 1)− P (Y ∈ J,D = 1|Z = 0) = P (Y 1 ∈ J,C) ,

P (Y ∈ J,D = 0|Z = 0)− P (Y ∈ J,D = 0|Z = 1) = P (Y 0 ∈ J,C) .

Since the share of compliers (C) has to be non-negative at every point in the
distribution of Y , the following inequalities must hold

P (Y ∈ J,D = 1|Z = 1)− P (Y ∈ J,D = 1|Z = 0) ≥ 0 , (2.1)

P (Y ∈ J,D = 0|Z = 0)− P (Y ∈ J,D = 0|Z = 1) ≥ 0 . (2.2)

Balke and Pearl (1997) and Heckman and Vytlacil (2005) also discuss these testable
implications. Kitagawa (2015) uses a variance-weighted Kolmogorov-Smirnov-type
statistic to test (2.1) and (2.2). Mourifié and Wan (2017) rewrite (2.1) and (2.2)
as conditional moment inequalities (conditional on Y = y) and then apply the
intersection bounds approach of Chernozhukov et al. (2013). Huber and Mellace
(2015) relax Assumptions A1 and A2 to hold only in expectation because this is
sufficient to identify average effects. Kitagawa (2015), Proposition 1.1 and Mou-
rifié and Wan (2017), Theorem 1, establish that (2.1) and (2.2) are sharp, in the
sense that they are the strongest testable implications of Assumption A1-A3 given
the available data. Laffers and Mellace (2017) prove that the inequalities pro-
posed by Huber and Mellace (2015) are the strongest testable implications when
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Assumptions A1 and A2 hold only in expectation.
The inequalities (2.1) and (2.2) must hold at any point x in the covariate space X
as well

P (Y ∈ J,D = 1|Z = 1, X = x)− P (Y ∈ J,D = 1|Z = 0, X = x) ≥ 0 , (2.3)

P (Y ∈ J,D = 0|Z = 0, X = x)− P (Y ∈ J,D = 0|Z = 1, X = x) ≥ 0 . (2.4)

Conditioning on X can be helpful in several ways. For illustration, if we only
impose randomization/unconfoundedness, we can derive from (2.3)

P (Y ∈J,D = 1|Z = 1, X = x)− P (Y ∈ J,D = 1|Z = 0, X = x)

=P (Y 11 ∈ J |C,X = x)P (C|X = x)− P (Y 10 ∈ J |F,X = x)P (F |X = x)

+ P (Y 11 ∈ J |A,X = x)P (A|X = x)− P (Y 10 ∈ J |A,X = x)P (A|X = x) ≥ 0 ,

where A, C and F denote always-takers, compliers and defiers, respectively. First,
the proportion of compliers within some covariate cell, P (C|X = x), might be lower
than in the full sample. Second, the fraction of defiers might be overrepresented or
exist only in certain covariate cells. In both cases, local violations of Assumption
A3 can be detected more easily when we condition on those cells. Third, the
direct effect of the instrument might be stronger for some subpopulations, making
it easier to find local violations of Assumption A1 when we condition on X.
Kitagawa (2015), Huber and Mellace (2015) and Mourifié and Wan (2017) also
apply their tests within covariate cells. However, how to form these cells so that
they make finding violations of the LATE assumptions more likely is an open ques-
tion, in particular when covariates are continuous. Arbitrarily defining subgroups
is inefficient. A further problem is the potentially large dimensionality of X, which
makes implementation of the above tests for all x infeasible. Therefore, we propose
a data-driven way to find and test local violations of IV validity.
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3 A Local IV validity test

Let (Yi, Di, Zi, Xi) be i.i.d. observations for i = 1, . . . , n. Define for any J ∈ BY
the pseudo variables

QJ,d,i :=

QJ,1,i = −1{Yi ∈ J}Di

QJ,0,i = 1{Yi ∈ J}(1−Di)

for d ∈ {0, 1}. The necessary conditions stated in equations (2.3) and (2.4) can
be interpreted as learning the sign of the treatment effect of Z on QJ,d conditional
on covariates. Note that the assignment of the instrument is now the “treatment”.
We first use a causal forest (CF) to estimate conditional average treatment effects
(CATEs). Second, we grow shallow trees to search for subgroups in the covariate
space, in which we observe heterogeneity in the CATEs. These shallow trees sum-
marize the heterogeneity signals in the CATE, and allow for easy implementation
and visualization of our local IV test. Third, we discuss a procedure to select
the promising subgroups, in which we may exhibit potential violations. Finally,
we test whether the group average treatment effects in these promising subgroups
are incompatible with the LATE assumptions. In the following, we describe our
test procedure in more detail. Additionally, Appendix A gives further information
regarding the implementation of our test in R and collects the main steps of our
procedure in pseudo code.

3.1 Estimating heterogeneous treatment effects

Let

τJ,d(x) = E[QJ,d,i|Zi = 1, Xi = x]− E[QJ,d,i|Zi = 0, Xi = x] (3.1)

be the CATE of Z on QJ,d at X = x. Under Assumptions A1-A3, τJ,d(x) ≤ 0

must hold for every combination of J , d and x. Due to our definition of QJ,d,
positive signs of τJ,d(x) now point to violations of the LATE assumptions. For all
possible combinations of J and d, we regress out the marginal effects that X has
on QJ,d and Z using random forests (Breiman, 2001) to account for the potential
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confounding, and use the residuals to estimate τJ,d(x) with causal forests. Wager
and Athey (2018) and Athey et al. (2019) derive pointwise asymptotic normality
of the causal forest estimator τ̂J,d(x) under certain regularity assumptions. The
assumptions to establish causality are

Assumption CF1. (Q1
J,d, Q

0
J,d) ⊥ Z|X .

Assumption CF2. For some ε > 0 it holds ε < P (Z = 1|X = x) < 1− ε .

Note that Assumption CF1 is implicitly part of Assumption A2 as the pseudo
outcomes are functions of Y dz and Dz. Therefore, randomization or unconfound-
edness – depending on the application we have in mind – is not testable with our
procedure. Neither (A1) nor (A3) are, however, necessary to estimate a CF and
can thus be tested with our procedure. CF2 assumes overlap, meaning that the
instrument must not be deterministic in X. An empirical example in which this
assumption may be violated is the twin birth instrument (Rosenzweig and Wolpin,
1980; Angrist and Evans, 1998; Farbmacher et al., 2018). Twinning strongly de-
pends on maternal age (X) and is a very rare (if not even impossible) event if the
expectant mother is very young.
To assess the magnitude of the potential violations of the LATE assumptions, we
use the augmented inverse probability weighted scores from Robins et al. (1994)

Γ̂J,d,i := τ̂
(−i)
J,d (Xi) +

Zi − ê(−i)(Xi)

ê(−i)(Xi)
(
1− ê(−i)(Xi)

) (QJ,d,i − µ̂
(−i)
J,d (Xi)−

(
Zi − ê(−i)(Xi)

)
τ̂
(−i)
J,d (Xi)

)
,

(3.2)

where τ̂ (−i)J,d (Xi), ê(−i)(Xi) and µ̂(−i)
J,d (Xi) denote leave-one-out estimates of τJ,d(x),

e(x) = P(Zi = 1|Xi = x) and µJ,d(x) = E
(
QJ,d,i

∣∣Xi = x
)
, respectively. Leave-

one-out (or out-of-bag) estimates are obtained without using the i-th observation.
We average Γ̂J,d,i over all observations i that fall into certain subgroups, which we
define in a data-driven way as discussed in the next section.

3.2 Detecting and selecting promising subgroups

We use regression trees as a data-driven approach to partition the data along
observable covariates. Trees have already been used to perform subgroup analysis

8



in the context of heterogeneous effects (for example, Su et al., 2009; Athey and
Imbens, 2016). We grow a single tree on each score Γ̂J,d using the classification and
regression tree (CART) algorithm (Breiman et al., 1984). The CART algorithm is
essentially a data mining tool that recursively adds axis-aligned splits to the tree. It
will split the sample at the covariate value that delivers the largest heterogeneity
between the newly formed subgroups. We denote the resulting tree structure
by ΠJ,d, which is a collection of terminal and non-terminal nodes – the terminal
nodes are also called leaves. The leaves partition the covariate space into a set of
rectangles. The CART algorithm is greedy in the sense that it tries to improve
the splitting criterion only at the next split, without considering possible future
splits. The splitting ends after certain criteria are met. An important parameter
here is the user-defined minimum number of observations ultimately required to
be in each leaf.
Growing a tree deeply uncovers more heterogeneity and may make it more likely
to find violations of the LATE assumptions. A deeper tree, however, also implies
smaller sample sizes within the leaves, leading to noisier estimates. A classic
solution to solve this bias-variance trade-off is to penalize tree size proportional to
a constant, which is determined via K-fold cross-validation. This is called pruning.
In the first step, we grow a complete tree without any early stopping criteria
other than a minimum leaf size, which can lead to a quite large and complex
tree structure. In a second step, we prune this tree using 10-fold cross-validation
applying the optimal complexity parameter. Pruning gives us a set of relevant
subgroups, i.e., groups that potentially exhibit heterogeneity in τJ,d(x) independent
of its sign.
We are, however, particularly interested in finding sign heterogeneity in τJ,d(x).
Under Assumption A1-A3, τJ,d(x) can vary only between -1 and 0 for any x. How-
ever, if the IV is invalid, τJ,d(x) can vary between -1 and 1. Therefore, local
violations of the LATE assumptions may induce observable heterogeneity in the
sign of τJ,d(x). For illustrative purposes, consider testing Assumption A3 sepa-
rately. This is a special case of our testing procedure, which reduces to finding
sign heterogeneity in the first stage effect and testing for the presence of defiers.
In this case, we let J cover the whole domain of Y , i.e. Q1 = −D, and Q0 is
redundant. Then, the absolute value of τ1(x) = −E[D1−D0|X = x] measures the
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conditional average treatment effect of Z on D, which reflects the local fraction of
compliers or defiers. Finding positive CATEs would imply that, for some obser-
vations, the instrument actually creates a disincentive to take up the treatment,
which violates the monotonicity assumption. Note that identifying the LATE may
still be possible in such a setting under additional assumptions (de Chaisemartin,
2017).
The following selection procedure aims to find the “most” promising subgroups
within the relevant ones. We regard a subgroup as promising if we can exhibit
potential violations of the LATE assumptions within it, i.e. subgroups in which
the CATE is potentially positive. We only use these selected subgroups in the
local IV test to increase its power. To ensure the validity of the test, we perform
this selection on the training sample. First, we select only the leaves of the pruned
trees. If the violations are sufficiently strong, the pruned tree will partition the
sample accordingly. Second, we exclude leaves in which the CATE turns out to be
clearly negative. Such leaves point to a sizeable fraction of compliers, which makes
it hard to detect violations in this subgroup. Finally, we compare each leaf with its
left or right pair and use only the leaf side that exhibits a larger average treatment
effect. We give additional details about this selection procedure in Appendix A.

3.3 Testing for local violations of IV validity

We use honest estimation to prevent a bias from overfitting (see, for instance,
Athey and Imbens, 2016). That is, one randomly chosen part of the sample, called
the training sample, is used to build the tree while the remaining sample, called
the estimation sample, is used to estimate (group) average treatment effects, which
are ultimately used for our local IV test. Instead of training and estimation, we
will call the two random halves of the full sample SA and SB, and we will swap the
roles of the samples to alleviate the inefficiency of the sample splitting (following
Chernozhukov et al., 2018). For each combination of J and d, we grow the trees
ΠSA

J,d and ΠSB

J,d , respectively. Due to the sample swapping and as d ∈ {0, 1}, we
build four times as many pruned trees as we use intervals to discretize Y .
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Consider the expectation of Γd,i for a given partition

ζAJ,d,l = E
[
ΓJ,d,i

∣∣Xi ∈ Ll

(
x ; ΠSB

J,d

)]
, ζBJ,d,l = E

[
ΓJ,d,i

∣∣Xi ∈ Ll

(
x ; ΠSA

J,d

)]
,

where Ll

(
x ; ΠJ,d

)
denotes the lth element of the set of selected leaves of the tree

ΠJ,d . The expectations within these partitions are then estimated in sample SA

when the tree has been obtained in sample SB, and vice versa. In the remainder
of the paper, we keep the sample swapping procedure implicit.
We collect the moments of the selected leaves over all combinations of J and d in
ζ =

(
ζA, ζB

)
. Positive elements of ζ are local violations of the LATE assumptions.

Therefore, we test the following null hypothesis

H0 : ζj ≤ 0 for all j = 1, . . . , p

H1 : ζj > 0 for some j = 1, . . . , p ,

where p = |ζ|. Rejecting the null means that the LATE assumptions are violated in
at least one subpopulation. Finding a violation in any subpopulation casts doubt
on the IV validity in the entire population because we cannot rule out further
violations in other subpopulations.
For ease of notation, let tj denote the j-th variable that we use to estimate the
moment ζj from a total of p moments. Furthermore, let ζ̂j = 1

nj

∑
i tij denote the

sample mean of the j-th variable and σ̂2
j = 1

nj−1
∑

i

(
tij − ζ̂j

)2 its sample variance
with nj the sample size within leaf j. We consider the test statistic

T = max
1≤j≤p

√
nj ζ̂j

σ̂j
. (3.3)

Under the H0 it must hold that

T ≤ max
1≤j≤p

√
nj

(
ζ̂j − ζj

)
σ̂j

,

hence, finding an upper bound for the (1−α) quantile of√nj(ζ̂j−ζj)/σ̂j is sufficient
to keep the actual size of the test at or below α. Using a Bonferroni correction for
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multiple testing, a critical value for T is

c(α) = Φ−1(1− α/p) . (3.4)

If one is interested not only in the global null hypothesis, but additionally in
obtaining the subgroups that violate the LATE assumptions, the Bonferroni-Holm
correction is more powerful.
To obtain our asymptotic result, we will rely on recent findings from the double
machine learning framework. Observe that, as described in Athey and Wager
(2017), the estimator from (3.2) can be interpreted as

Γ̂J,d,i := m̂
(−k)
J,d (Xi, 1)− m̂(−k)

J,d (Xi, 0) +

Zi − ê(−k)(Xi)

ê(−k)(Xi)
(
1− ê(−k)(Xi)

) (QJ,d,i − m̂
(−k)
J,d (Xi, Zi)

)
,

e(x) = P (Zi = 1|Xi = x), mJ,d(x, z) = E [QJ,d|Z = z,Xi = x] ,

(3.5)

which aligns with the double machine learning framework introduced by Cher-
nozhukov et al. (2018). Here mJ,d(·) and e(·) are unknown nuisance functions. In
their theorem 5.1, they establish that the mean of the estimates Γ̂J,d,i is asymptoti-
cally Gaussian and efficient, as long as the nuisance estimates m̂(−k)

J,d (·) and ê(−k)(·)
converge sufficiently fast and are determined by crossfitting, which we indicate by
(−k) here. Adapted to our testing problem, the following assumptions are needed
to derive asymptotic results.

Assumption T1. For all J, d and every selected leaf l, it holds

P
(
X ∈ Ll

(
x ; ΠJ,d

))
≥ c > 0 and

E
[
(QJ,d −mJ,d(X,Z))2 |X ∈ Ll

(
x ; ΠJ,d

)]
≥ c > 0.

where c is a generic constant independent of n.

Assumption T2. The nuisance functions are estimated via K-fold crossfitting,
and with probability no less than 1− o(1) it holds

1. ‖ê(−k)(X)− 1
2
‖P,∞ ≤ 1

2
− ε ,
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2. max
(
‖ê(−k)(X)− e(X)‖P,2,maxJ,d ‖m̂(−k)

J,d (X,Z)−mJ,d(X,Z)‖P,2
)
≤ δnn

−1/4,

where δn = o(log−1(n)).

Assumption T1 ensures that the number of observations in the subgroups defined
by the selected leaves of the pruned trees increases with the sample size. More-
over, it assumes that the pseudo outcome variable is non-deterministic in each
leaf given X and Z. The first part of Assumption T2 assumes that the estimates
of the propensity score are bounded away from zero and one, which is a stan-
dard assumption in the literature. The second part of Assumption T2 states that,
with probability converging to one, all nuisance components are o(n−

1
4 ) consistent

with respect to the L2-error. This rate is much weaker than the standard rate of
o(n−

1
2 ) due to the so-called Neyman orthogonality or double robustness property

of the estimator. In principle, other estimators than random forests (e.g., from
Kernel regressions) can be used for the nuisance functions, as long as they fulfill
Assumption T2. Moreover, Assumption T2 can be weakened at the expense of a
more complicated notation. For a detailed discussion of the convergence rates and
sharpness of the conditions, see Chernozhukov et al. (2018), Chernozhukov et al.
(2016) and Athey and Wager (2017).
The following proposition shows that the probability of rejecting H0 – although
being true – does not exceed α asymptotically when we use c(α) as the critical
value.

Proposition 1. Suppose that Assumptions CF1, CF2, T1 and T2 hold, then we
have under the H0

P
(
T > c(α)

)
≤ α + o(1).

Proof. We directly obtain Proposition 1 by relying on theorem 5.1 from Cher-
nozhukov et al. (2018). The corresponding conditions stated in their assumption
5.1 have to be satisfied for each subgroup. Our Assumption CF1 implies their
assumption 5.1(a). The first part of our Assumption T1 ensures that the num-
ber of observations within all subgroups is O(n), with probability converging to
one. Further, the second part of T1 is equivalent to their assumption 5.1(d). As-
sumptions 5.1(b) and 5.1(e) hold because |QJ,d| ≤ 1 and 5.1(c) is implied by CF2.
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Lastly, (i) of 5.1(f) is directly implied by |QJ,d| ≤ 1 and our Assumption T2. The
proposition then follows by the union bound.

We derive the subgroups from the leaves of the pruned regression trees after apply-
ing our selection procedure described in Section 3.2. If there is no heterogeneity
in the CATE, the pruned trees will not split the sample, or splits will occur due to
noise only. If the sign of τd(x) is negative everywhere but its magnitude is hetero-
geneous over covariates, then splits may occur even under H0 but only a few (or
even none) of them will turn out to be “promising”. In case the set of hypotheses
turns out to be empty (due to a very strong instrument, for example), we report
a test based on the root nodes of the pruned trees. Note that the number of sub-
groups that can be tested is bounded by Assumption T1. Relying on results of
Chernozhukov et al. (2019) and Belloni et al. (2018) about multiple testing in a
high-dimensional setting, it might be possible to allow for a number of leaves that
increases slowly with sample size.
The pointwise normality of the causal forest estimates could also be used to test
for violations of the LATE assumptions at prespecified points in the covariate
space. Alternatively, one could rely on uniform confidence bands for τd(x). There
exists a vast literature on confidence bands for nonparametric functions (among
others, Bickel and Rosenblatt, 1973; Konakov and Piterbarg, 1984; Li et al., 1989;
Hall et al., 2013) mostly building on kernel or local polynomial methods. Due
to the curse of dimensionality, the performance is reliable up to at most p = 3.
Since the number of covariates used to ensure unconfoundedness is usually not
that small, most of these methods are not applicable in economics. Lee et al.
(2017) develop uniform confidence bands for the average treatment effect condi-
tional on a small (≤ 3) subset of covariates, implying that one would still need to
select the promising covariates beforehand. Additionally, they assume parametric
specifications for the propensity score and for the remaining covariates to avoid
the curse of dimensionality. By using random forests, we can avoid such strong
structural assumptions. As a result, in our procedure, the number of covariates
can be relatively large although not high-dimensional. To use random forests in
high-dimensions, modifications to the algorithm and an assumption of sparsity are
needed (Wager and Walther, 2015).
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4 Simulations

To test the finite sample performance of our new procedure, we run several Monte
Carlo simulations. Process 1 simulates a randomized experiment similar to that of
Huber and Mellace (2015). While in process 1 Assumption A2.a holds, process 2
simulates a setting in which the instrument is unconfounded (i.e. Assumption A2.b
holds). Process 2 uses an easy propensity score of the instrument Z and strong
confounding of D. In both processes, we use the same function for Y , which also
depends on the covariates X:

Y = D + γxZ +
3∑

k=1

0.3Xk + u

whereXk ∼ N(0, 1) and (u, v) ∼ N

(
0,

(
1 0.3

0.3 1

))

Process 1 (randomized): Process 2 (unconfounded):
D = 1{αxZ + v} D = 1{b+ αxZ + v}
Z ∼ Bernoulli(0.5) Z = 1

{∑3
k=1 0.2Xk + w

}
where b = 0.5 log(1 + eX1+X2+X3)

and w ∼ N(0, 1)

For both processes we use different values of γx and αx :

• DGP0 (exogenous but uninformative IV ): γx = 0 , αx = 0

• DGP1 (exogenous and relevant IV ): γx = 0 , αx = 0.20

• DGP2 (local violation of monotonicity, defiers exist in subpopulation):

γx = 0 , αx =

−0.75 if X1 < Φ−1(0.15)

0.40 otherwise

• DGP3 (local violation of exclusion restriction):

γx =

1.25 if X2 < Φ−1(0.15)

0 otherwise
, αx = 0.20
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• DGP4 (global violation of exclusion restriction): γx = 0.5 , αx = 0.20

• DGP5 (global violation of exclusion restriction but with sign heterogeneity):

γx =

 0.50 if X3 < Φ−1(0.5)

−0.50 otherwise
, αx = 0.20

DGP0 allows us to verify the control of the nominal test size. There are no
compliers in this setting and, therefore, the moment inequalities are binding (i.e.,
ζj = 0 for all j = 1, . . . , p). DGP1 represents the case in which the instrument is
not only exogenous but also relevant. In this case, the values of ζj are all supposed
to be negative. The stronger the instrument is, the more conservative the test will
be. In DGP1, the choice of αx = 0.2 leads to a complier share of roughly 8%.
DGP2 models a local violation of monotonicity. The local share of compliers or
defiers is given by Φ(|αx|)−Φ(0), which multiplied by the size of the subpopulation
gives the average share of compliers or defiers in the population. DGP2 leads to
an average share of defiers in the population of roughly 4.1%, which are hidden in
the covariate space. The average complier share is more than three times as large
(13.2%), which makes it hard to refute the LATE assumptions with tests based
on the entire sample. DGP3 corresponds to a local violation of the exclusion
restriction, while DGP4 and DGP5 globally violate it.
Table 1 shows rejection frequencies for both processes with 1,000 replications. The
sample size is 3,000. We discretize Y into four intervals using an equidistant grid
from the minimum to the maximum value of Y . We compare our procedure with
Kitagawa (2015)’s test, Mourifié and Wan (2017)’s test and Huber and Mellace
(2015)’s mean and full independence test. We find for both processes that our
procedure does not overreject the null hypothesis of no violation of the LATE
assumptions at the 5% nominal level (DGP0). Note that the rejection frequency
in DGP0 under process 2 (i.e., the instrument is only valid conditional on X)
would be 0.296 if we did not regress out the effects that X has on QJ,d and Z.
This is, therefore, a crucial step if the instrument is confounded. As expected,
the test procedure is conservative if compliers exist and there are no violations of
the LATE assumptions (DGP1) – this is in line with the results from Kitagawa
(2015)’s test, Mourifié and Wan (2017)’s test and Huber and Mellace (2015)’s test.
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Under DGP2, the monotonicity assumption is violated only in a certain area of the
covariate space. Consequently, we expect that splitting the sample by covariates
leads to a strong improvement in test power. Indeed, our procedure has distinctly
larger power than the alternative tests in this setting. In case of DGP3, a local
violation of the exclusion restriction, our procedure again clearly outperforms the
alternatives. When the violation of the exclusion restriction is global (DGP4),
the existing tests perform better than our procedure. This is to be expected,
because splitting the data by covariates cannot improve the precision of our test but
honest splitting of the sample leads to a lower sample size available for estimation.
However, if the global violation of the exclusion restriction actually has different
signs in local areas of the covariate space, then our test can again perform better
than existing ones. In DGP5 we illustrate this by the extreme case of completely
opposite direct effects.

– Table 1 about here –

In Appendix B, we show further simulation results. In Table B.1 we briefly examine
the size and power of the tests for three numbers of intervals: 2, 4 and 6. It shows
rejection frequencies for all DGPs except for DGP1. In all three specifications, we
see that our test controls the size under the null hypothesis. The power tends to
decrease with the number of intervals, which may reflect the fact that the effective
sample size within an interval decreases when we use more intervals. Moreover,
we shed some light on the effectiveness of the selection step in Table B.2. The
average number of promising subgroups we obtain after the selection is reduced
by up to 45% compared to using all leaves. This reduction is reflected in a rise of
the rejection frequencies (particulary, for DGP2, 3 and 5, in which we have a local
component).

5 Applications

In this section, we apply our procedure to two widely used instrumental variables,
namely parental preferences for mixed-sex composition of children (Angrist and
Evans, 1998) and the Vietnam draft lottery (Angrist, 1990). The Vietnam draft
lottery is an IV that is randomized by design and, therefore, Assumption A2.a
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holds. There are several studies that use the draft lottery to estimate the causal
effect of Vietnam-era military service on civilian earnings, schooling, disability
status, or health later in life (see, for example, Angrist, 1990; Angrist and Chen,
2011; Angrist et al., 2011, 2010). We are interested in the literature investigating
the effect of military service on schooling. Angrist and Chen (2011) argue that
schooling gains can be attributed to the use of the GI Bill, which made generous
schooling benefits available to veterans. This is an important channel of a causal
effect of military service on schooling. A potential direct effect of the lottery on
schooling, however, arises due to deferments, which, among other reasons, were
issued to men who were still attending school. Card and Lemieux (2001) show
that draft avoidance led to a rise in the college enrollment rates of young men.
This additional schooling might lead to a violation of the exclusion restriction.
The second application builds on the observation that some parents prefer a mixed-
sex composition of their children. Angrist and Evans (1998) propose using the
occurrence of same-sex siblings as an IV for the number of children. Rosenzweig
and Wolpin (2000) discuss several reasons why this IV may be invalid. Huber
(2015) was the first to test the validity of the LATE assumptions in this setting.
He finds no violation in the full sample and very few violations across 22 arbitrarily
chosen subgroups and concludes that the IV’s validity in these data cannot be
refuted. Our test procedure can be seen as a flexible extension of table 1 in Huber
(2015) or of section VII in Bisbee et al. (2017), in which we derive the promising
subgroups in a data-driven way.

5.1 Results with original outcomes

In the first application, we use data from an extract of the 1979 and 1981-85 March
Current Population Survey (CPS) (see Angrist and Krueger, 1992, for more details
about the data). We consider the 1970 draft lottery, held on December 1969,
which affected men born in the period 1944-1950. Since the rate of conscriptions
dropped considerably after June 1971, most men who obtained deferments in 1970
(for instance, due to additional schooling) could permanently avoid military service
(Card and Lemieux, 2001). The Vietnam draft lottery randomly assigned a number
from 1 to 366 to men born in this cohort based on their date of birth. The numbers
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determined the order of the call for conscription, starting with the smallest number.
At some point during the year, the Selective Service announced a maximum lottery
number that would be called. For instance, the ceiling was 195 in the 1970 lottery.
In this application, Y measures education (no college, some college, college), D is
veteran status and Z indicates whether the individual’s date of birth led to a lottery
number lower than 200, which considerably increased the risk of conscription. We
use age, indicators for ethnicity, region dummies, and the year of the survey as
covariates. Table 2 shows the test results for this application. All tests (incl. our
test) do not reject the null hypothesis.
The sample in the second application consists of married and unmarried mothers
aged 21 to 35 years with at least two children as recorded in the 1980 US census.
In this application, Y is the logarithm of annual labor income, Z indicates a same-
sex composition of the first two children and D is an indicator of having more
than two children at the time of the census. We use mother’s age in 1980, age at
first birth, educational attainment (three levels) and ethnicity as covariates. The
upper panel of Table 3 shows the test results for this application. All tests (incl.
our test) do not reject the null hypothesis.

– Tables 2 and 3 about here –

5.2 Results with synthetic outcomes

As reported in the previous section, we do not find local violations of the LATE
assumptions using the original outcome Y. To further illustrate the performance
of our test procedure in a real application, we add a local direct effect of Z to Y .
The direct effect is rather small (1/4 of the SD of Y ) and applies only to a small
subgroup of mothers in the 1980 US census data (3.4% of the sample, i.e. 7,513
observations), which makes it hard to find in the full sample,

Ysyn = Y + 1/4 σ̂Y Z 1{age < 25}1{educ = HS} .

The mean of the outcome variable is essentially unchanged (Ȳ = 8.939 and
Ȳsyn = 8.944) since the manipulated subgroup is rather small. The mean in the
manipulated subgroup rises from 8.53 to 8.69. Since we choose where the direct
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effect is located in the covariate space, we can check whether different tests in fact
succeed in recovering it.
The lower panel of Table 3 shows the test results for the synthetic outcome. Our
test clearly rejects the null hypothesis while the p-values of the existing tests are
unchanged compared to the results in the upper panel. A traditional subgroup
analysis would clearly help them to reject the null hypothesis but cannot be per-
formed since the location of the violation is oracle knowledge. Our data-driven
subgroup testing, however, successfully finds the synthetic violation as illustrated
in Figure 1, which shows the pruned regression tree leading to the maximum t-
statistic.

– Figure 1 about here –

6 Conclusion

Using instrumental variables to identify local average treatment effects is common
in empirical research. In studies that do so, however, the validity of instruments
is a point of debate. Fortunately, the LATE framework generates empirically
testable implications for instrument validity. In this paper, we propose a machine
learning based approach to perform IV validity tests in a data-driven way. In the
spirit of subgroup testing, our procedure uses the CART algorithm to split the
sample along covariate values. Some of these splits form promising subgroups,
which can be used to test for local violations of IV validity. We use causal forests
to estimate the magnitude of the violations in these subgroups. Our approach can
be easily implemented using existing software packages. We provide an R package
(LATEtest) and apply our test to two widely used instrumental variables, namely
parental preferences for mixed-sex composition of children and the Vietnam draft
lottery. In line with the previous literature, we do not find violations of the LATE
assumptions in either application.
Our procedure is subject to some restrictions, which offer promising avenues for
future research. First, it requires the presence of covariates that are unaffected
by the treatment and the instrumental variable. The test results are sensitive
to the set of covariates we have available. Second, we follow the literature and
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use an equidistant grid to discretize the outcome variable into a finite number
of arbitrarily chosen sets. This could lead to some estimated negative densities
not being detected because they can average out with nearby positive densities of
compliers in the same set. The literature about scan statistics may make our and
the existing tests more powerful by providing a way to find these intervals in a data-
driven manner as well (see, for example, Walther, 2010). Third, we need to conduct
honest splitting to avoid bias from adaptive searching for violations: one half of
the sample is used to build pruned trees while the other half is used to estimate the
magnitude of the violations. Although we switch the roles of the samples, doing so
reduces the number of observations we can use for testing. Fourth, while detecting
promising subgroups with pruned trees allows us to interpret and visualize the
source of violations easily, it may not be necessary. A particularly interesting
topic of future research will be to test whether the estimates of a causal forest are
positive at any point of its support.
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Tables and Figures

Table 1: Simulation results

FGK K MW HM

Process 1
DGP0 (exog but uninformative) 0.036 0.060 0.060 –
DGP1 (exog and relevant) 0.009 0.005 0.007 0.000
DGP2 (local defiers) 0.749 0.005 0.006 0.000
DGP3 (local direct effects) 0.743 0.057 0.066 0.002
DGP4 (global direct effects) 0.907 0.980 0.923 0.980
DGP5 (global direct effects, varying signs) 0.593 0.006 0.003 0.000

Process 2
DGP0 (exog but uninformative) 0.036
DGP1 (exog and relevant) 0.002
DGP2 (local defiers) 0.658
DGP3 (local direct effects) 0.767
DGP4 (global direct effects) 0.972
DGP5 (global direct effects, varying signs) 0.716

Table displays rejection frequencies (based on 1000 replications) for significance level of
5% and n = 3000. FGK refers to our test, K to Kitagawa (2015)’s test, MW to Mourifié
and Wan (2017), and HM to Huber and Mellace (2015)’s test based on full independence
using Chen and Szroeter (2014)’s smooth indicator method with tuning parameters as
defined in section 3 of Huber and Mellace (2015). Huber and Mellace (2015)’s test based
on mean independence performs worse in our setting with respect to size and power and
is, therefore, not reported. For the FGK test we regress out the marginal effects that X
has on QJ,d and Z using random forests.
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Table 2: Test results of the validity tests for the Vietnam draft IV

p T c(α) p-value

FGK 6 1.49 2.39 0.412
Kitagawa (2015) test 1.000
H&M (2015) full independence 1.000
H&M (2015) mean independence 1.000

Data extract from 1979 and 1981-85 March CPS. Sample size is 20,606.
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Table 3: Test results of the validity tests for the sibling sex IV

p T c(α) p-value

Original Outcome
FGK 20 2.28 2.81 0.228
Kitagawa (2015) test 1.000
H&M (2015) full independence 0.999
H&M (2015) mean independence 1.000

Synthetic Outcome
FGK 24 9.08 2.87 0.000
Kitagawa (2015) test 1.000
H&M (2015) full independence 0.999
H&M (2015) mean independence 1.000

Data from 1980 US census. Sample size is 220,502. Mourifié and Wan (2017)
test is based on a random subsample of 26,342 observations due to compu-
tational constraints. It does not reject at the 10% level for both outcomes.
We discretize Y into four intervals using an equidistant grid from the mini-
mum to the maximum value of Y . To allow for a faster computation of our
test, we use a subsample fraction equal to 0.05 when we grow the random
forests (for the orthogonalization) and the causal forests. Moreover, we set
the minbucket parameter of rpart to 1600 when we build the pruned trees.
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Figure 1: Data from 1980 US census (synthetic outcome). Pruned regression tree
leading to the maximum t-statistic. The first value in every leaf indicates the effect
heterogeneity in the training sample. Positive values indicate violations of the null
hypothesis, which still need to be confirmed in the estimation sample. The second
line shows the absolute and relative size of each leaf. The text beneath the leaf
shows the variable and value on which the leaf was split next.
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A Details about the R package LATEtest

In this appendix, we provide further information about the implentation of our
testing procedure and provide pseudo code of the R package LATEtest (available at
https://github.com/farbmacher/LATEtest). We employ regression_forest

from the grf package to estimate e(x) and µJ,d(x). To account for potential
confounding, we construct residuals using the out-of-bag predictions, which are
computationally more convenient to obtain than the K-fold predicted values. We
employ grf (1.1.0) (available at https://github.com/grf-labs/grf) using these
residuals to obtain the CF estimates τ̂J,d(x). To partition the data, we grow a single
tree on each score Γ̂J,d using the CART algorithm. For this task, we use rpart (4.1-
15) (available at https://github.com/bethatkinson/rpart). In our package we
set the minbucket parameter of rpart, which defines the minimum number of
observations ultimately required to be in each leaf, to 200 by default. Note that
different procedures can be used to partition the data. One could, alternatively,
analyze the trees of the causal forest to find the “best” tree (for an implementation,
see https://gist.github.com/msegar/c15af2bfc067e5319eecfd67d785fde5).
Moreover, following Chernozhukov et al. (2018) we could group based upon the
predicted CATEs of the CF.

The algorithm on the next page shows the main steps of our proposed test pro-
cedure in pseudo code. Note that the selection step in line 14 can be extended.
For instance, we additionally compare each leaf with its left or right pair and use
only the leaves that have a larger t-statistic in the training data than its pair. To
incorporate the variance of the estimates, we rely on t-statistics for the selection
of the promising subgroups. We do not intend to perform any testing in this step
but only use the selection as an explorative tool to find promising leaves.
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Algorithm 1 LATEtest
Input: n training examples of the form (Yi, Di, Zi, Xi), where Yi is the response,
Di the treatment indicator, Zi the instrument indicator and Xi are the covariates.
A minimum leaf size k, a significance level α and the number of subsets to form
J .
1: Split the sample into two subsamples of equal size A and B.
2: On both samples separately train a regression forest with Zi as outcome and
Xi as covariates to obtain the leave-one-out estimates ê(−i)(Xi).

3: for each J do
4: for d = 0, 1 do
5: Construct the pseudo outcome variables QJ,d,i.
6: for both samples separately do
7: Train a regression forest with QJ,d,i as outcome and Xi as covariates to

obtain the leave-one-out estimates µ̂(−i)J,d (Xi).

8: Train a causal forest with QJ,d,i−µ̂
(−i)
J,d (Xi) as outcome, Zi−ê(−i)(Xi)

as treatment and Xi as covariates to obtain the leave-one-out estimates
τ̂
(−i)
J,d (Xi).

9: Construct the estimates Γ̂J,d,i as defined in (3.2).
10: end for
11: Use sample A to fit a CART tree with Γ̂J,d,i as outcome, Xi as covariates,

minimal leaf size k and apply cost complexity pruning.
12: for each leaf l = 1, . . . , lmax do
13: Calculate the t-statistic t(A)

J,d,l over observations Γ̂J,d,i in sample A contained
in leaf l.

14: if t
(A)
J,d,l > −Φ−1(1− 0.05/lmax) then

15: Calculate the t-statistic t(B)
J,d,l over observations Γ̂J,d,i in sample B con-

tained in leaf l and store the values in a vector Tvec.
16: end if
17: end for
18: Repeat lines 11-17 with swapped roles for samples A and B.
19: end for
20: end for
21: if max(Tvec) > Φ−1(1− α/|Tvec|) then
22: Reject the null hypothesis.
23: end if
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B Additional simulation results

Table B.1: Discretizing Y

Number of intervals 2 4 6

DGP0 (exog but uninformative):
FGK 0.043 0.036 0.035
K 0.044 0.060 0.068

DGP2 (local defiers):
FGK 0.896 0.749 0.503
K 0.000 0.005 0.009
HM 0.000 0.002 0.000

DGP3 (local direct effects):
FGK 0.855 0.743 0.518
K 0.013 0.057 0.050
HM 0.096 0.002 0.000

DGP4 (global direct effects):
FGK 0.978 0.907 0.821
K 0.940 0.980 0.987
HM 1.000 0.980 0.937

DGP5 (global direct effects, varying signs):
FGK 0.543 0.593 0.451
K 0.000 0.006 0.002
HM 0.000 0.000 0.000

Table displays rejection frequencies (based on 1000
replications) for significance level of 5%, n = 3000
and process 1. FGK refers to our test, K to Kita-
gawa (2015)’s test, and HM to Huber and Mellace
(2015)’s test based on full independence using Chen
and Szroeter (2014)’s smooth indicator method. Hu-
ber and Mellace (2015)’s test based on mean inde-
pendence performs worse in our setting with respect
to size and power and is, therefore, not reported. We
discretize Y using an equidistant grid of intervals from
the minimum to the maximum value of Y (number of
intervals vary by columns).
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Table B.2: Effectiveness of the selection step

before after
mean # RF mean # RF

DGP0 (exog but uninformative) 18.81 0.033 15.92 0.036
DGP1 (exog and relevant) 18.81 0.001 12.81 0.002
DGP2 (local defiers) 23.63 0.605 15.85 0.658
DGP3 (local direct effects) 24.20 0.712 13.73 0.767
DGP4 (global direct effects) 20.63 0.976 11.06 0.972
DGP5 (global direct effects, varying signs) 26.22 0.643 15.30 0.716

Table displays mean number of hypotheses obtained from pruned trees and rejection frequencies
(based on 1000 replications) for significance level of 5%, n = 3000 and process 2. We discretize
Y using an equidistant grid of four intervals from the minimum to the maximum value of Y , and
regress out the marginal effects that X has on QJ,d and Z using random forests.
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