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Zusammenfassung:

Wir schlagen eine Markov-Ketten-Approximationsmethode für zeitdiskrete Steuerungsprobleme 
vor und zeigen, wie man die Geschwindigkeitsvorteile von zeitstetigen Algorithmen in dieser 
Modellklasse nutzen kann. Unser Ansatz spezifiziert eine diskrete Markov-Kette auf einem Gitter, 
wobei eine Approximation erster Ordnung der bedingten Verteilungen in ihren ersten und zweiten 
Momenten um einen Referenzpunkt herum verwendet wird. Standardergebnisse der dynamischen 
Optimierung garantieren Konvergenz. Wir zeigen, wie unsere Methode auf kanonische Sparprobleme 
mit und ohne Portfoliowahl angewandt werden kann, wobei Geschwindigkeitsgewinne von bis zu 
zwei Größenordnungen (ein Faktor 100) im Vergleich zu modernsten Methoden erzielt werden, wenn 
dieselbe Anzahl von Gitterpunkten verwendet wird. Dies geschieht ohne signifikanten Verlust an 
Präzision. Wir zeigen, wie man den Fluch der Dimensionalität vermeidet und die Berechnungszeiten 
bei hochdimensionalen Problemen mit unabhängigen Schocks überschaubar hält. Schließlich zeigen 
wir, wie unser Ansatz die Berechnung von dynamischen Spielen mit einem großen Zustandsraum 
erheblich vereinfachen kann, indem wir eine zeitdiskrete Version des altruistischen Sparspiels lösen, 
das in Barczyk & Kredler (2014) untersucht wurde.
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Abstract:

We propose a Markov-chain approximation method for discrete-time control problems, showing how to 
reap the speed gains from continuous-time algorithms in this class of models. Our approach specifies a 
discrete Markov chain on a grid, taking a first-order approximation of conditional distributions in their 
first and second moments around a reference point. Standard dynamic-programming results guarantee 
convergence. We show how to apply our method to standard consumption-savings problems with and
without a portfolio choice, realizing speed gains of up to two orders of magnitude (a factor 100) 
with respect to state-of-the-art methods, when using the same number of grid points. This is without 
significant loss of precision. We show how to avoid the curse of dimensionality and keep computation 
times manageable in high-dimensional problems with independent shocks. Finally, we show how our 
approach can substantially simplify the computation of dynamic games with a large state space, solving
a discrete-time version of the altruistic savings game studied by Barczyk & Kredler (2014).



Continuous-time speed for discrete-time
models: A Markov-chain approximation

method∗

Ivo Bakota◦ Matthias Kredler•

Munich Center for the Economics of Aging Universidad Carlos III de Madrid

Max Planck Institute for Social Law and Social Policy

Abstract
We propose a Markov-chain approximation method for discrete-time control problems,
showing how to reap the speed gains from continuous-time algorithms in this class of
models. Our approach specifies a discrete Markov chain on a grid, taking a first-order
approximation of conditional distributions in their first and second moments around a
reference point. Standard dynamic-programming results guarantee convergence. We
show how to apply our method to standard consumption-savings problems with and
without a portfolio choice, realizing speed gains of up to two orders of magnitude (a
factor 100) with respect to state-of-the-art methods, when using the same number of
grid points. This is without significant loss of precision. We show how to avoid the
curse of dimensionality and keep computation times manageable in high-dimensional
problems with independent shocks. Finally, we show how our approach can substan-
tially simplify the computation of dynamic games with a large state space, solving
a discrete-time version of the altruistic savings game studied by Barczyk & Kredler
(2014).

Keywords: Markov-chain approximation (MCA) methods; altruism; tensors; controlled
Markov chains
JEL codes: C60, C61, C73, E21, G11

∗ This version: May, 2022.
◦ bakota@mea.mpisoc.mpg.de
• Email: matthias.kredler@uc3m.es



1 Introduction

Motivation. There has been a recent, renewed interest in continuous-time methods in
economics. This is not only for their theoretical tractability, but also for the ease and speed
of computation.1 Computation of these models is usually performed by Markov-chain-
approximation (MCA) methods or variants thereof.2 In a nutshell, this paper applies the
same principles to create a MCA method for discrete-time problems, thus harnessesing
the speed gains and tractability of continuous-time algorithms also in discrete-time models
(which are more commonly used in economics).

We now describe briefly the state-of-the-art and sketch how our approach differs.
The standard solution method for discrete-time stochastic control problems in economics
(see, among others, Heer & Maußner (2011)) is as follows: a) Discretize continuous state
variables on a grid, b) discretize shocks on a finite support following Tauchen’s (1986)
method, c) interpolate value (or policy) functions to calculate continuation values on the
points sampled in the previous step, d) solve for the best policy given these continuation
values, and e) update the value (or policy) function. Note here that when computing con-
tinuation values in Step c), the method essentially amounts to computing a weighted com-
bination of function values at neighboring grid points — or a weighted sum in the case
of the most popular method, linear interpolation. At this point, our first modification (the
modified Tauchen step) comes in: Instead of keeping shock discretization and interpola-
tion separate, we directly specify a probability distribution over grid points, the weights
being a smooth function of the controls. This sets up a controlled Markov chain on the
(fixed) grid. Since the resulting control problem is usually still untractable, the second
step —and key novelty— of our approach comes in: linear moment approximation. We
take a first-order approximation of the distribution vector over grid points in the 1st and
2nd moments of the stochastic process. Doing so, we obtain simple first-order conditions
(FOCs) in most of our applications. If FOCs are still unwieldy, in a third step one may
apply law-of-motion/return-function approximation, taking a first-order Taylor expansion

1A recent prominent example is Achdou et al.’s (2022) analysis of the heterogeneous-agents incomplete-
markets model.

2Note here that finite-difference schemes can be framed as a sub-case of MCA. The standard reference
on MCA methods is Kushner et al. (2001). See also Phelan & Eslami (2021), who provide an excellent
introduction to MCA methods in macroeconomics.
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of the mapping from control variables to moments and/or the return function.. Finally, we
turn to high-dimensional examples in which shocks are independent across the different
dimensions; using tensor algebra we show how to avoid the curse of dimensionality and
accelerate our baseline algorithm by several orders of magnitudes.

Our approach is inspired by continuous-time MCA methods, which proceed in the
following steps: i) Discretize state variables on a grid, ii) construct a (discrete-time) Markov
chain on this grid that matches the first and second moments of the underlying diffusion
process (usually restricting jumps to a close neighborhood), thereby iii) dropping lower-
order terms in laws of motion and iv) making the time increment small enough so that all
transition probabilities are positive (which is the stability condition).

We use three examples to illustrate our approach, comparing our method to the state-
of-the-art in speed and precision. We first solve a standard consumption-savings model in
Section 2, in which time savings of our algorithm are about one order of magnitude (a factor
10). Second, we solve a portfolio problem with two assets in Section 3, where speed gains
are on the order of a factor 100. In both these examples, our algorithm yields solutions
that are very close to those from a state-of-the-art algorithm and to a benchmark with a
closed-form solution, suggesting that our algorithm sacrifices very little (if anything) on
precision. Third, we apply our algorithm to a high-dimensional example with two decision
makers in Section 4: a dynamic savings game played by two savers, a parent and a child,
the parent being altruistic towards the child and providing transfers. The general recipe for
our algorithm is described in Appendix A. Appendix B introduces concepts from tensor
algebra that compactly describe operations on multi-dimensional arrays and shows how to
speed up computations under independent shocks across multiple dimensions.3

Our approach has the following advantages, many of which it shares with continuous-
time MCA algorithms. First, it leads to simple FOCs (often independent ones when multi-
ple controls are present) and thus avoids costly root-finding routines or non-linear solvers.
Second, it casts laws of motion as sparse matrices, thus allowing for fast computation also
in high-level programming languages such as Matlab and Julia (which both have built-in
sparse matrix routines that are optimized for speed). Multiplication by sparse matrices
speeds up both backward operations (calculation of continuation values and other expec-

3See the functions MatrixTimesArray.m and kronm.m that we provide on Matlab Central.
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tations) and forward operations (evolution of distributions). Third, results from the litera-
ture on controlled Markov chains apply to our algorithm, thus guaranteeing convergence
of the algorithm by standard dynamic-programming arguments; there are results available
proving monotonicity and a rapid speed of convergence.4 To apply these results in our
approach, one has to ensure that all transition probabilities in the approximating Markov
chain are non-negative; we provide simple conditions to ensure this here, for both low- and
high-dimensional problems. Fourth, our approximation scheme allows us to solve dynamic
games (i.e. settings with more than one decision maker) that are otherwise untractable. In
the example in Section 4, we show how to adapt our algorithm to solve a discrete-time
version of Barczyk & Kredler’s (2014) model of altruistically-linked savers. We show that
our algorithm yields the same qualititative results as theirs, at a computation time of about
one second for the value-function-iteration loop with a state space of size 60× 60× 2× 2.
This makes computation of large-scale savings games feasible also in discrete time.5

However, our approach also has some drawbacks that the user should be aware of;.
First, to reap the full benefits of our approach, one has to ensure that the state does not
move more than one grid point up or down in expectation in each period (and in each
continuous dimension). In our applications, this can always be achieved by choosing the
time period short enough so that this is ensured for any fixed grid. Second, there is a loss of
precision in approximation steps 1-3. However, one has to bear in mind that also alternative
measures make approximations. e.g. when interpolating functions. In our examples, there
is no visible loss of accuracy when compared to the state-of-the-art; our approach in fact
tends to yield solutions that are closer to closed-form solutions of germane benchmark
models and has comparable or even slightly smaller Euler equation residuals.6

4Puterman & Brumelle (1979), for example, establish monotonicity and a quadratic speed of convergence
near the solution for policy-function-iteration algorithm for a controlled finite-state Markov chain. As Phelan
& Eslami (2021) find for continuous-time settings, we also find that modified policy function iteration (apply-
ing a policy guess for a finite number k of periods when updating the value function) is the fastest algorithm
(classical policy function iteration can be seen as setting k = ∞). We are not aware of similar results for the
state-of-the-art approach using interpolation.

5Fifth, our approach can easily accommodate non-linear grids, which allows to set grid points economi-
cally.

6Third, for the convergence results on controlled Markov chains to apply, one has to reflect back stochastic
processes at the ”artificial grid margins”, i.e. at the grid boundaries that are not part of the model’s physical
environment, but are imposed by the finiteness of computer memory. This reflection distorts value and policy
functions close to the grid boundaries. Thus, the user should always ensure that results close to these bound-
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Our approach connects to various methods in the literature. First, our approach nests
two algorithms that are routinely employed: a) value-function iteration with linear inter-
polation obtains as a limit of our algorithm; this is the case in one-dimensional problems
with a deterministic law of motion, such as in a standard consumption-savings model; b) a
standard trinomial grid method (as is routinely used to approximate standard continuous-
time diffusions) obtains when choosing a three-point approximating distribution in our ap-
proach. Second, our approach yields (approximate) Bellman Equations that are very similar
to the Hamilton-Jacobi-Bellman equations resulting from (continuous-time) stochastic cal-
culus, which is a popular tool especially in the finance literature7, but also increasingly in
macroeconomics. This analogy obtains since our approach focuses on how controls affect
the conditional mean and variance of the continuous state variables, which is exactly what
stochastic calculus does. However, our discrete-time setting has the advantages that it is i)
arguably more intuitive, ii) closer to the original setup of most models in economics, and
that iii) it avoids the mathematical intricacies of Brownian Motion.

For an overview of methods used to solve DSGE models and a general description of
finite-element methods, which the Markov-chain approximation is akin to, see ?. Other
standard references for the benchmark algorithms that we compare our approach to are ?
and ?. ? also contains a treatment of discrete-state Markovian control problems with dis-
crete choices; these are distinct from our approach, however, since i) the underlying phys-
ical environment features continuous states in our problem and ii) our approach features
continuous choice variables, even in the approximated economy. ? also use tensor notation,
but for a different purpose than we do: they aim to simplify the notation of polynomials
that come in up in function approximation, whereas we do so to simplify the computation
of transition matrices.

aries do not affect results by ensuring that the equilibrium process spends negligible time close to artificial
boundaries. We also remark here that other methods, such as extrapolation, can lead to similar distortions at
artificial grid margins, but without the benefit of added stability.

7See Karatzas et al. (1998) for an introduction to continuous-time methods in finance.
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2 Consumption-savings model

2.1 Setup

Consider an infinitely-lived saver who orders consumption streams {ct}∞t=0 by the criterion

E0

∞∑
t=0

βtu(ct), (1)

where β ∈ (0, 1) and where we assume the CRRA utility functional u(ct) = c1−γ

1−γ
with

γ > 0. The law of motion for assets at is

at+1 = (at − c+ y)R̃t+1, (2)

where initial assets a0 ≥ 0 and income y ≥ 0 is given. The saver faces a no-borrowing
constraint, i.e. at+1 ≥ 0. The return R̃t+1 is distributed i.i.d. log-normally with variance
σ and mean r, thus the density conditional on choosing savings st ∈ [0, at + y] is at+1 ∼
f(at+1|st) = lnN (r+ ln st, σ). The Bellman Equation that characterizes the saver’s value
function W (·) is captured by the operator T defined by

(TV )(a) = max
s∈[0,a+y]

{
u(a+ y − s) + βER̃′V (R̃′s)

}
. (3)

The solution to the problem is the unique fixed point W = T (W ) of this operator. It can
be approximated by successive iterations, Wn+1 = TWn, on any starting guess W0, as is
well-known.

2.2 Algorithms

State of the art. We will first review the standard method of approximating a solution
to the Belllman Equation (3) and use this to motivate our approach. In iteration n + 1,
a guess Wn(·) of the value function is given on a finite set of grid points. The canonical
method first discretizes the shock R̃′ via Tauchen’s (1986) method, yielding a discrete set
{x̃1, x̃2, ..., x̃I} of states with associated probabilites {p1, . . . , pl}. It then evaluates the
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continuation (value) function Wn(·) once for each possible realization of the discrete shock,
computing

∑I
i=0 piWn(x̃i). To illustrate, assume that we use linear interpolation and that

all discretized-shock realizations fall in between two grid-points (call them X̃l and X̃h).
The standard method will then evaluate Wn(·) on the neighboring two grid points I times,
linearly interpolating V (x̃i) = V (X̃l)

X̃h−xi

X̃h−X̃l
+V (X̃h)

x̃i−X̃l

X̃h−X̃l
, where the weight given to the

two grid points is given by their linear distance from the point x̃i.8 The continuation value is
then computed by summing all the possible realizations weighted by their probabilities pi:
CV =

∑I
i=0 pi(V (X̃l)

X̃h−x̃i

X̃h−X̃l
+ V (Xh)

x̃i−X̃l

Xh−Xl
), where we see that both V (X̃l) and V (X̃h)

are evaluated I times. Our idea now is the following: Instead of sampling shocks and
then interpolating in two separate steps, we directly specify weights on grid points, which
we will let vary smoothly in the agent’s savings choice. In the simple example, we can
construct weights w̃i actually construct weights collecting terms as follows:

CV =
I∑

i=0

pi
X̃h − x̃i

X̃h − X̃l︸ ︷︷ ︸
w̃l

V (X̃l) +
I∑

i=0

pi
x̃i − X̃l

X̃h − X̃l︸ ︷︷ ︸
w̃h

V (X̃h). (4)

The advantage is that once having constructed the weights ωl and ωh, we only have to
evaluate the value function at the neighboring grid points once.

When moving to more complex examples (with Tauchen shocks spanning more than
one grid interval and when using non-linear interpolation), then the weights under the
canonical method become more complex, non-smooth functions of {pi, x̃i, } etc. and their
combination occurs not necessarily a simple sum. But the principle stays the same: the
canonical method uses information from a small number of neighboring grid points, i.e.
function values {Wn(X̃j)} for some subset of grid points {X̃j}mj=1, to approximate a con-
tinuation value, CV . Our idea is to streamline this procedure, specifying a direct mapping
from controls (here: savings s) to a set of weights on grid points that i) captures the shock’s
probability distribution, but that is also ii) smooth and iii) tractable when it comes to calcu-
lating first-order conditions.

Modified Tauchen step. To specify our weights, we proceed in the way of of Tauchen’s

8Note here that interpolating several times is computationally even more expensive for non-linear inter-
polation.
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original paper, i.e. by calculating the probability that a random variable falls into a bin
corresponding to a discrete grid point. However, we use as a grid the algorithm’s asset
grid, {x̂j}Nj=1, and do not create an additional shock grid {x̃i}, as the canonical method
does. Setting the bin boundaries half-way between grid points, we calculate the probability
weight on grid point x̂j (given a savings choice s) as

ωj(s) =

∫ (x̂j+x̂j+1)/2

(x̂j+x̂j−1)/2

f(a|s)da = F ((x̂j + x̂j+1)/2|s)− F ((x̂j + x̂j−1)/2|s), (5)

where we define F (a|s) = [f(x|s)]a−∞ as the cumulative distribution function (cdf) of the
log-normal density over assets given s. For practical reasons, we set small weights below
some tolerance level ϵ to zero.9

Linear moment approximation step. Taking a glance at the weights from (5), it is
clear that the modified Tauchen step per se does not lead to a much more tractable prob-
lem. When calculating a first-order condition, one would have to take the derivative of the
weights in the choice s; this is feasible, but is cumbersome both analytically and computa-
tionally. When inspecting the distributions of assets for quantitatively reasonable savings
choices (at least at a yearly model frequency), one observes that their shape remains quite
similar. This motivates our second, and key, step: linear moment approximation. The idea
is to approximate linearly how the conditional distribution over the asset grid (a vector)
changes as one moment (here: s) changes. In order to obtain proper probability distribu-
tions, we will do so by mixing two distributions. A natural choice is to use the distributions
that obtain from choosing savings s = ân and s = ân+1 exactly on two neighboring grid
points, here for a saver choosing savings s ∈ (ân, ân+1) . We will then choose the grid
and time interval such that the equilibrium savings choice is likely not to move the state by
more than one grid point at a time, i.e. so that s ∈ [ân−1, ân+1]. This then leads to a linear

9In general, in this modified Tauchen step the user has to specify a set of moments that parameterize
distribution that captures the law of motion. The default choice for these moments are the mean and the vari-
ance, see Appendix A for the reasons. In this simple example we use only one variable (s) to parameterize
the conditional distribution. Note that s mainly increases the mean of the log-normal, but a higher s also
increases the variance of a′ (for constant σ); intuitively, the same proportional shock means a higher absolute
movement in assets at higher savings. The effect on the variance is secondary here and we obtain good ap-
proximations with only one parameter. In general, it should always be checked if approximating distributions
are good (in terms of mean and variance) when using different parameters for the conditional distribution.
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Taylor expansion around the reference distribution f(·|s = an) — which arises from zero
savings—, using directional gradients of (forward if s > an and backward if s < an).10 We
will now see how this comes about.

We now describe this procedure in matrix notation. First, for each grid point an on the
N -size grid, we construct a 1-by-N row vector f (0)(an)T that discretizes the conditional dis-
tribution given savings s = an, collecting the weights from the modified Tauchen step (5).
We then collect all N distributions in the N-by-N matrix F(0) = [f (0)(a1); f

(0)(a2); . . . ]; we
make this matrix sparse by setting elements below some threshold ϵ to zero. For savings
s ∈ (an, an+1), we then approximate

f(s) ≃ an+1 − s

an+1 − an
f (0)(an) +

s− an
an+1 − an

f (0)(an+1) (6)

= f (0)(an) + [s− an︸ ︷︷ ︸
=m (drift)

][(f (0)(an+1)− f (0)(an))/(an+1 − an)]︸ ︷︷ ︸
≡dm(an)

, (7)

where we have defined the drift, m, and a forward difference quotient dm at a = an, which
captures how the distribution f(s) changes locally as we vary savings between to adjacent
grid points, i.e. for s ∈ [an, an+1].11 dm(an) is visualized in the Figure 1.b, where we can
see that increasing savings lowers the probability of transitioning to the grid points with
lower assets, but increases the probability of transitioning to grid points with higher levels
of assets. The first summand on the right-hand side of (7), f (0), is the expansion point (or
what we will call the reference distribution); the second summand is the first-order term of
a Taylor expansion mentioned before. One conditional distribution f(s) approximated in
this way is visualized in the Figure 1.a.

Sketch of proposed algorithm. We now sketch our algorithm, using consumption
c rather than s as a choice variable (the mapping between to two is immediate from the
budget constraint). We first define a drift function in terms of state and control, m(a; c) =

10This is equivalent to the upwind principle for first derivatives in solution schemes in continuous-time
MCA algorithms, or indeed any solution algorithm for partial differential equations.

11We also construct a backward quotient for negative drifts, using an analogous formula for negative drifts,
s < an. We omit this and only present the forward case for brevity. It is important to note here that the
use of the backward and forward quotients ensures that we obtain proper probability distributions f(s) for
any s ∈ [an−1, an+1], i.e. all vector elements are non-negative and sum to one: This is so due to (6): the
approximating distribution is constructed as a convex combination of two proper distributions.
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Figure 1: Obtaining the mixed distribution f(s)

(a − c + y)r − c + y. Next, we create a matrix Dm = [dm(a1);dm(a2), . . . ], collecting
the gradients.12. Finally, we collect the vectors fT to a transition matrix on our grid, given
a vector c of consumption choices:

F(c) = F(0) +m(a; c) ◦Dm, (8)

where y ◦ Z ≡ [yiZij]i,j denotes element-by-element multiplication in the sense that each
element yi multiplies the entire ith row of matrix Z. The approximate Bellman Equation
that characterizes the N − by − 1 value vector w in the optimum is

w =βF(0)w +max
c

{
u(c) + βm(a, c) ◦Dmw︸ ︷︷ ︸

=H(a;c;·)

}
, (9)

12Again, we restrict attention to positive drifts here, but backward quotients are used for negative drifts.
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where ◦ denotes element-by-element multiplication of two vectors. Here, we may call H(·)
a pseudo Hamiltonian.13 As in the corresponding continuous-time problem, H(·) captures
the dynamic effects of savings through the term Dmw, which captures the marginal value
of wealth, just as the value-function derivative does in continuous time. This leads to a very
simple FOC for consumption that can be solved in closed form, a simplification that leads
to major speed gains in all our examples.

Finally, we simply iterate on value function given an initial guess w0, applying an ac-
celeration step (also called modified policy function iteration). The algorithm is as follows:

1. Make an initial guess for the value function w0 and consumption c0. Compute the
matrices F(0) (transition probabilities without drift, i.e. for m(a; c) = 0), Dm (ap-
proximated derivatives of the transition probabilities with respect to the drift m(a; c)).
Set the iteration counter to n = 0.

2. Set n = n + 1. Obtain c∗n by evaluating the first-order condition given the approxi-
mation

c∗n = (β (1 + r)︸ ︷︷ ︸
=−mc(a;c)

Dmwn−1)
− 1

γ (10)

3. Given the calculated c∗n, update the drift m(a; c∗n), the transition matrix F(c∗n) and
the value function wn = u(c∗n) + βF(c∗n)wn−1.

4. Use the acceleration step k times with the given policy function c∗n: wn = u(c∗n) +

βF(c∗n)wn

5. Compare the computed c∗n with c∗n−1. If the norm ||c∗n − c∗n−1|| is sufficiently small,
end the algorithm. If not, set n = n+ 1 and go to step 2.

13To see why, consider the corresponding continuous-time HJB with Hamiltonian Hct:

ρV (a) = max
c

{
u(c) + (ra+ y − c)V ′(a)︸ ︷︷ ︸

=Hct(a;c;V ′(a))

}
.
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2.3 Comparison: Consumption-savings

Table 1: Parametrization

Parameter Symbol Value

Risk aversion / IES γ 2

Discount factor β 0.96

Mean asset return r 0.02

Return variance σ 0.03

Income y 0.2

Points in Tauchen approximation p 3

Number of ”speed-up” iterations k 100

Number of grid-points N 350

We calibrate the model at the yearly frequency, thus setting a standard discount factor
of β = 0.96. This is a rather long time-period, which does not work in favour of the
proposed method. Despite this, the algorithm produces a numerical result comparable to
the other methods. As discussed earlier, shortening the time-period reduces the discrepancy
in the results, as the Markov approximation becomes more accurate, and the discrete-time
problem gets closer to the continuous-time problem.
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Table 2: Comparison: Consumption-savings problem
Solution in “linear” regiona Euler Equation

Method Run-timeb Consumption rate # Iterationsc Errors d

Standard (exogenous) grid 0.2462 2.92% 12 6.84e-07

Endogenous grid 0.1195 3.00% 451 6.86e-07

Markov approach 0.0162 3.01% 17 6.07e-07

aExpressed as a percentage of assets. The policy function is evaluated when the assets are equal to 1500 in every algorithm,
a region where the policy function is practically linear.

bReported values are in seconds. The code is written in MATLAB. All simulations are executed on a personal computer
using Windows 7 (64-bit) operating system, with Intel i7-8700 Central Processing Unit (6 cores and 12 threads), clocked at
3.19 GHz.

cAcceleration step is used in all algorithms except the endogenous grid method, (as it slows down the computation when
using that method). Acceleration step performs k = 100 iterations, so the overall number of iterations is obtained by multi-
plying the reported number by k.

dThe reported value is the maximum error computed in the asset interval [1100, 1900], based on the computed 1000
points. Since there is no straightforward way to compute the Euler equation errors in between the grid-points for the Markov-
approximation, they are computed using the Tauchen discretization of the law of motion with 5 possible states.

We see that the proposed Markov approach results in speed-gains even in relatively
simple model with only one state and control variable. The policy functions do show small
discrepancy across methods, the distance becoming smaller if the time period t is shortened
(i.e. setting smaller discount and interest rates). Therefore, the accuracy reported here is
rather conservative, since the chosen discount factor and interest rate are consistent with
annual parametrisation. Still, we can see that even with an annual parametrization, the
proposed method produces a reasonably close results. Comparing the Euler equation errors
in the linear region (far from the borrowing constraint14), we can see that the proposed
method has smaller residuals that benchmark methods.

14Figure C.1 in Appendix C shows the policy functions close to the borrowing constraint. We can see that
there are some discrepancies in that region, but they do not appear to be large.

12



3 Portfolio choice problem

We now add a second risky asset to the problem from the previous section, thus turning the
problem into one of portfolio choice. This serves to illustrate how our approach generalizes
when both the mean and variance moments are used in the approximation (the default case),
showcasing how the speed gains increase over traditional methods increase as we add a
second moment (but keep only one state dimension).

3.1 Setting

Consider again a saver with the CRRA preferences given in (1). We now set flow income to
zero, i.e. y = 0, in order to obtain a homogeneous setting for which a closed-form solution
is available, at least in the continuous-time variant of the model. At each t, the saver first
takes consumption ct ∈ [0, at] out of her wealth and then divides the remaining savings into
a safe and a risky asset. The law of motion for wealth is

at+1 = (at − c)(1 + xt(r̃t+1 − rf ) + rf ), (11)

where a0 is given and xt is the portfolio share of the risky asset. r̃ is distributed normally
with variance σ and mean r, while rf is the return on the safe asset with no variance.
Therefore, in this problem, there are two control variables: x and c.

3.2 Proposed Markov approach

We first describe three versions of our Markov-chain approach. The benchmark algorithms
we compare our approach to are described in the appendix.

To avoid negative probabilities and assure the stability the return of the safe asset rf ,
which in the original problem has 0 variance is assumed to have a very small variance
σf = 0.004. Since, we are approximating the perfectly safe asset by an asset with very
small variance, the net returns on the risky and safe asset, r̃r and r̃s are joint-normally dis-

tributed with mean µ =

(
rr

rs

)
and variance Σ =

(
σ2
r ρσrσs

ρσrσs σ2
s

)
.

13



Table 1: Parameterization of portfolio problem

Parameter Symbol Value
Risk aversion / IES γ 2

Discount factor β 0.96
Mean risky asset return rr 0.022

Safe asset return rf 0.0195
Risky return variance σ 0.03
Covariance coefficient ρ 0

Points in Tauchen approximation p 9, 7a

Number of “speed-up” iterations k 100
Number of grid-points N 400

a9 for in the exogenous grid, and 7 in endogenous grid method,
which is the smallest odd number to achieve stability in this particu-
lar application.

The idea of our algorithm is now as follows: We approximate the conditional distribu-
tion of assets given a choice (c, x) by approximating the distribution as linear combinations
of certain benchmark moments. We first write down functions that give us the mean and
variance of assets conditional on controls (c, x) and current assets a. The drift function is

m(a; c, x) = (a− c)(rf + x(rr − rf ))− c,

the variance function is

v(a; c, x) = (a− c)2
[
(1− x)2σ2

f + 2x(1− x)σfr + x2σ2
r

]
,

where σfr = ρσrσf is the covariance between the two assets.
Our linear moment approximation step proceeds then as in the simple consumption-

savings model, but now expanding with respect to two moments: the mean and the vari-
ance.15 Again, we first choose a reference point, in this case the one characterized m̄ = 0

15We show in the appendix that choosing the variance as the parameter governing the dispersion gives us
first-order accurate approximating variances. The same is not true if we chose the standard deviation instead
of the variance, for example. This is in line with the results from (Kushner et al. 2001) that show that mean
and variance of approximating Markov chains have to be accurate (at least to a first order) to guarantee good
convergence properties.

14



(no drift in assets) and v̄ = σ2
f (portfolio only in safe asset), from which we obtain the

reference distribution f (0)(an) at grid point an. Figure 2.a shows this distribution in blue.
To determine how the distribution changes as m and v increase, we then calculate distribu-
tions i) varying only the drift m (but fixing the variance v̄) to obtain the gradient dm(an)

and ii) varying only the variance v (but fixing the drift m̄) to obtain dv(an). This procedure
is depicted in Figure 2. Sub-figures 2.a and 2.b echo Figure 1, but in addition to the drift,
now we have an additional moment in the approximation: v. We see that the derivative dv

puts more weight on the tails of the distribution, removing it from the center.

Figure 2: Increasing the drift m(a; c) and and variance v(a; c, x) in the matrix F (U) as
compared with the F (0) matrix

Collecting again for all asset grid points to matrices, we then have the first-order ap-
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proximation16

F(U) ≃ F(0) +m(a; c, x)Dm + v(a; c, x)Dv,

where U = [c,x] is the N-by-2 matrix of controls chosen. Again, we elements below
a tolerance value to zero. Figure 2.c visualises the sparse matrix F (0), which contains
information of a reference distribution of transition probabilities when s = a. It answers the
question: What are the probabilities of moving to grid-points with certain amount of assets
next period (horizontal axis), conditional on the starting grid-point this period (vertical axis)
and saving s = a. Notice that it is a very sparse matrix, which our algorithm exploits. Most
mass is around the diagonal, as there is a high probability to remain at exactly the same grid
point next period. If the agent decides to save more than a (increasing the drift m(a; c, x)),
then she shifts the distribution rightwards (green arrows in the figure), i.e. increases the
probabilities of moving to a grid point with higher assets, and reduces the probabilities of
moving to grid points with lower level of assets. Furthermore, the agent can also increase
the variance of the distribution v(a; c, x) by choosing a riskier portfolio with higher x. This
stretches the distribution (red arrows), increasing the mass at the tails of the distribution,
and decreasing the probability to stay at exactly the same grid-point. Figure 2.d visualises
the transition matrix F (U) under the optimal policies, which imply positive savings and
some risk-taking. Notice that the distribution is still close to the diagonal, but shifted
rightwards, as the agent in this region saves, s > a, and has positive share of a higher-
yielding risky asset in their portfolio x. Furthermore, the distribution also has thicker tails,
again because of the positive share of risky assets, x > 0.

In the previous section, Figure 1.a showed how the reference distributions mix with the
changing drift and produce the mixed distribution of transitional probabilities, conditional
on the chosen drift. Since we are approximating with the first two moments in the portfolio
choice problem, we mix the distributions with different variance. The principle is shown
in Figure 3. The reference distribution is blue, while the distribution assuming maximum

16We explain in the appendix who it can be ensured that we obtain a proper probability distribution in this
approximation. Intuitively, this can be guaranteed as long as we construct a convex combination of three
distributions (reference, high mean, high variance).

16



Figure 3: Variance mixing

variance (x = 1) is shown in red color. By choosing higher x (and therefore higher vari-
ance v), the agent moves away from the (reference) blue distribution and closer to the red
distribution.

Given the linear moment approximation, the approximate Bellman Equation pinning
down the value function w = W (a) on the grid is then

w = βF(0)w + max
c≥0,x∈[0,1]

{
u(c) + β

[
m(a; c, x)Dmw + v(a; c, x)Dvw

]︸ ︷︷ ︸
≡H(a;c,x;·)

}
. (12)

Again —and this is no coincidence—the pseudo Hamiltonian H(·) takes almost exactly the
same form as in the continuous-time version of this portfolio problem: Dmw is equivalent
to the first derivative of the value function, V ′(a), in the continuous-time version, capturing
the marginal value of wealth. Dvw is closely related to the second derivative, V ′′(a), which
is negative and captures risk aversion. We will shortly see how this leads to an intuitive
first-order condition for the portfolio choice x, capturing a mean-variance trade-off as is
common in finance.
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From the Bellman Equation (12), at grid point a we obtain the consumption FOC

and portfolio-share FOC

mx(a; c, x)︸ ︷︷ ︸
=(a−c)(rr−rf )

DmW + vx(x)DvW = 0,

which shows the mean-variance trade-off faced by the saver. Here, we have denoted by
DmW and DvW the elements in the vectors Dmw and Dvw that correspond to grid point
a. Also, the derivatives of drift and variance with respect to the controls are given by

mc(a; c, x) = −(1 + rf + x(rr − rf )), (13)

mx(a; c, x) = (a− c)(rr − rf ), (14)

vc(a; c, x) = 2(a− c)
[
−σ2

f (1− x)2 − x(1− x)σfr − σ2
rx

2
]
, (15)

vx(a; c, x) =
[
−2(1− x)(a− c)2σ2

f + (1− 2x)2(a− c)2σfr + 2x(a− c)2σ2
r

]
. (16)

Invoking the CRRA utility function u(c) = c1−γ

1−γ
, we obtain a system of two non-linear

equations in two unknowns c and x:

c−γ−(1+rf+x(rr−rf ))βDmW+β2(a−c)
[
−σ2

f (1− x)2 − x(1− x)σfr − σ2
rx

2
]
DvW = 0

(17)
(a−c)(rr−rf )DmW+

[
−2(1− x)(a− c)2σ2

f + (1− 2x)2(a− c)2σfr + 2x(a− c)2σ2
r

]
DvW = 0

(18)
This system has no closed-form solution. We thus consider different versions of our MCA
algorithm: In the first, we find a precise solution to the system of FOCs by root-finding. In
the second and third, we use an additional approximation step (law-of-motion approxima-
tion) to simplify the system of FOCs. Again, the idea is to use an approximation around a
reasonable reference point and is inspired by the way that continuous-time algorithms drop
lower-order terms.
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3.3 Different versions of value function iteration algorithm

3.3.1 “Fully” non-linear iteration

This is a version most similar to the classic value function iteration. The procedure is as
follows:

1. Guess starting values w0 and c0,x0. Compute the matrices F(0) (transition probabil-
ities at zero drift, i.e. m(a, x, c) = 0), Dm (approximated derivatives of the transition
probabilities with respect to the drift m), and Dv (approximated derivatives of the
transition probabilities with respect to the variance v).

2. Set the iteration counter to n = n+1. Given wn, solve the system of equations given
by equations 17 and 18 for cn and xn using a double (nested) root-finding routine.

3. Given the calculated policies , update wn using the Bellman Eq. (12) for k times
(k > 1: acceleration step).

4. Compare the computed cn, xn with cn−1, xn−1. If the norm is sufficiently small, end
the algorithm. If not, set n = n+ 1 and go to step 2.

The downside of this algorithm is that we need to solve a non-linear system of equa-
tions (equations 17 and 18) in each iteration. However, with some additional simplifying
assumptions (inspired by the continuous-time approximation) this can be avoided. Namely,
one can approximate the true solution by cancelling out some cross terms which converge
to zero as we decrease the time period. We will now describe how this works (at a tolerable
loss of precision) in the two options described below.

3.3.2 Cross-terms eliminated

In our first modification, we eliminate some cross terms by eliminating second-order terms
in the law of motion, dropping lower terms as this would occur in the continuous-time
limit. To see which terms are of second order, we write out flow controls rates, i.e. we write
c = C∆t, where C is a consumption rate. We note that both x and a are stocks, thus no
modification occurs here. The law of motion is then

at+∆t = (at − C∆t)[1 + r∆t+ x(r̃ − r)∆t].
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Approximating to a first order, we drop terms in ∆t2 and replace again C∆t by c, arriving
at the law of motion

at+1 = at(1 + r + x(r̃ − r))− ct.

We can also conceive this approximate law of motion as an “altered timing protocol”: It
says that returns are gained on beginning-of-period assets at and only after that consump-
tion ct is taken out of the wealth stock.

Thus, we now have drift m(a, x, c) = a(rf + x(rr − rf )) − c and variance v(a, x) =

a2
[
(1− x)2σ2

f + 2x(1− x)σfr + x2σ2
r

]
, the derivatives in controls being:

mc(a; c, x) = −1

mx(a; c, x) = a(rr − rf )

vc(a; c, x) = 0

vx(a; c, x) =
[
−2(1− x)a2σ2

f + (1− 2x)2a2σfr + 2xa2σ2
r

]
If we take FOCs now, we get:

c−γ − βDmW = 0 (19)

a(rr − rf )DmW + a2
[
−2(1− x)σ2

f + (1− 2x)2σfr + 2xσ2
r

]
DvW = 0 (20)

which is convenient, because we can get solutions for c and x in closed form and not
dependent on each-other directly. This means that now in the step 2, we don’t have to solve
the system of non-linear equations, which is computationally expensive. Instead, we can
simply evaluate two equations to obtain optimal c and x:

c∗ = (βDmW )
−1
γ

x∗ =
(rr − rf )DmW + (−σ2

f + σfr)2aDvW

(σ2
f − 2σfr + σ2

r)2aDvW
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which significantly reduces the computational time.

3.3.3 Cross-terms “exogenous” / constant

The simplification in the previous section greatly reduced computation time by eliminating
the “cross-terms” where optimal choice of c depended on x and vice-versa. However, a by-
product is an approximation error. This section develops an approach which reduces this
approximation error, but still preserves the computational gain from the previous section.

Now, instead of completely eliminating cross-terms, we are approximating them by
a best guess. In other words, (a − c) in the drift and variance derivatives will now be
approximated by (a − c̄), where c̄ will be treated as an exogenous constant when taking
the FOCs. For c̄, we use the solution from c from the precious iteration c̄n = c∗n−1 in
practice. In general, the modified equations can be worked out approximating c = c̄ +∆c

and x = x̄ +∆x in the FOCs, taking a Taylor expansion of the FOCs in (∆c,∆x) around
(0, 0) and dropping the lowest-order terms.

Following this method, drift and variance derivatives become:

mc(a; c, x) = −(1 + rf + x(rr − rf ))

mx(a; c, x) = (a− c̄)(rr − rf )

vc(a; c, x) = 2(a− c̄)
[
−σ2

f (1− x)2 − x(1− x)σfr − σ2
rx

2
]

vx(a; c, x) =
[
−2(1− x)(a− c̄)2σ2

f + (1− 2x)2(a− c̄)2σfr + 2x(a− c̄)2σ2
r

]
Now, it is possible to compute the optimal x∗, and then given the optimal x∗, compute

the optimal c∗. This way, we still avoid solving a system of equations, but the approximat-
ing error is smaller, since |c− c̄| < |c− 0|.

FOCs now give:

x∗ =
(rr − rf )DmW + (−σ2

f + σfr)2(a− c̄)DvW

(σ2
f − 2σfr + σ2

r)2(a− c̄)DvW
(21)

21



c∗ =
{
β(1 + rf + x(rr − rf ))DmW + β2(a− c̄)

[
−σ2

f (1− x)2 − x(1− x)σfr − σ2
rx

2
]
DvW

}−1
γ

(22)
Here, we replace the step 2 of the above algorithm with:

• Obtain x∗ by evaluating (21) and then c∗ by evaluating (22). Given the calculated c∗n

and x∗
n, update V (DmW and DvW ). Set c̄ = c∗.

In addition we need to approximate the term (a− c) with (a− c̄) in step 1. The rest of
the algorithm is as described in the section 3.3.1.
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3.4 Comparison: Portfolio choice problem

Table 4: Portfolio choice (Merton) problem
Solution in “linear” regiona # Euler Eq’n

Method Run-timeb Consumption Portfolio Iterationsc Errors d

Benchmark methods:

Standard (exogenous) grid 12.6886 2.94% 27% 14 6.45e-07

Endogenous grid 5.0449 3.04% 27.9% 484 1.367e-06

Markov approach:

Exact 0.7154 2.95% 30.1% 8 5.33e-07

Modified timing 0.0106 3.01% 29.1% 8 8.14e-07

Taylor approximation 0.0146 2.95% 29.9% 9 5.34e-07

Cont. time closed-form solution 2.99% 29.5%

aConsumption expressed as a percentage of assets; portfolio is risky share of savings. The policy function is
evaluated when the assets are equal to 1500 in every algorithm, a region where the policy function is practically
linear.

bReported values are in seconds. The code is written in MATLAB. All simulations are executed on a personal
computer using Windows 7 (64-bit) operating system, with Intel i7-8700 Central Processing Unit (6 cores and 12
threads), clocked at 3.19 GHz.

cAcceleration step is used in all algorithms except the endogenous grid method, (as it slows down the computa-
tion when using that method). Acceleration step performs k = 100 iterations, so the overall number of iterations is
obtained by multiplying the reported number by k.

dThe reported value is the maximum error computed in the asset interval [1000, 2000], based on the computed
1000 points. Since there is no straightforward way to compute the Euler equation errors in between the grid-points
for the Markov-approximation, they are computed using the Tauchen discretization of the law of motion with 9
possible states.

Table 4 summarizes the most important results in Section 3. First, we can see that
the policy functions of the proposed methods are quite close to the ones obtained by the
standard benchmark methods. This is despite relatively large discount factor (β = 0.96),
consistent again with an annual calibration. Second, our solutions are generally closer to
the closed-form continuous-time solution. Third, measured by Euler equation residuals, the
proposed methods are not less accurate than the benchmark models. Fourth, the Markov
approach algorithms are significantly faster than the benchmark models, the improvement
ranging from a factor of 8 to a factor of 300, depending on which implementation is chosen.
Fifth, the Taylor approximation implementation of the Markov approach, which signifi-
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cantly reduces the computational time, still produces relatively small Euler equation errors,
whereas the modified timing implementation is somewhat less precise.

Table 5: Varying the number of grid-points N

Runtime (seconds)

Method N = 150 N = 300 N = 450

Benchmark methods:

Standard (exogenous) grid 8.988 10.273 14.445

Endogenous grid 2.945 3.934 5.765

Markov approach:

Exact 0.250 0.553 0.840

Modified timing 0.008 0.011 0.015

Taylor approximation 0.009 0.013 0.016
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4 A game-theoretic application: altruistically linked savers

We now present an example that shows that the approach is also feasible, and in fact advan-
tageous, when i) the dimensionality of the state space is high and ii) when multiple decision
makers are present.

4.1 Setting

There are two infinitely-lived agents, a parent (indexed by p) and a child (indexed by k

for “kid”). Both have access to savings at a fixed gross interest rate R > 0 and cannot
borrow, that is we require ap ≥ 0 and ak ≥ 0, where ai are agent i’s assets. In each period
t = 0, 1, . . . , the parent first chooses consumption cpt and a transfer gt ≥ 0 (where g is for
gift). After observing the transfer, the child then chooses her consumption ckt . Savings sit
for i ∈ {p, k} are then residually determined from the budget constraints, which are

cpt + gt + spt = apt + ypt , (23)

ckt + skt = akt + gt + ykt . (24)

Here, yit is agent i’s current income. yit follows a Markov chain with a set of states {ŷi}Nyi

i=1

and transition probabilities πyi(ŷ
i|ŷj) from state j to i. The return Ri on savings si for both

i ∈ {p, k} follows a log-normal distribution with parameters (r, σ), that is,

lnRi = r + σϵi , where ϵi ∼ N (0, 1). (25)

Here, r governs the mean and σ the dispersion of returns. For simplicity, we assume that
the returns are independent across agents and across time; they are also assumed to be
independent from the income shocks. The law of motion for assets is ait+1 = Ri

t+1s
i
t, from

which it follows that

ln ai
′
= ln si + r + σϵi

′ ⇒ ln ai
′ ∼ N (si + r, σ), (26)

where we denote one-period-ahead variables with primes. This pins down the distribution
f (i)(ai

′|si) for agent i’s future assets given her savings choice as a log-normal distribution
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as given in (26). Agents’ preferences over consumption sequences are

V p
0 = E0

∞∑
t=0

βt
[
u(cpt ) + αu(ckt )

]
, (27)

V k
0 = E0

∞∑
t=0

βtu(ckt ), (28)

where β ∈ (0, 1) is a discount factor common to both agents, α > 0 captures the parent’s
altruism towards the child and where u(·) is a utility functional satisfying the standard
assumptions u′ > 0 and u′′ < 0 as well as the Inada condition limc→0 u

′(c) = ∞.

4.2 Agents’ problems and Bellman Equations

As described in Barczyk & Kredler (2014), we transform this problem to a game in which
agents choose actions simultaneously each period. We let the child announce desired con-

sumption c̃kt > 0, which need not satisfy the budget constraint — note that transfers by the
parent can make consumption in excess of the child’s own resources possible. Simultane-
ously to the child’s choice c̃kt , the parent chooses cpt and gt. We then determine realized

consumption (over which preferences are defined), ckt , from the following equations:

ckt = c∗(c̃kt , ã
k
t ) ≡ min{c̃kt , ãkt }, (29)

where ãkt = akt + ykt + gt. (30)

Here, ãkt , as defined by (30), is the child’s cash-on-hand at t after having received the
parent’s transfer. The function c∗(·), as defined by (29), gives realized consumption and
says that the child consumes up to her desired level as long as parent transfers allows this
(and saves anything that exceeds desired consumption, c̃kt ).

We now look for a Markov-Perfect Equilibrium (MPE) of the dynamic game. The
game’s payoff-relevant state is given by the vector x ≡ (ap, ak, yp, yk) ∈ R4. The system
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of Bellman Equations that characterizes a MPE is

W p(x) =max
cp,g

{
u(cp) + αu

(
c∗(c̃k, ãk)

)
+ βEϵp′,ϵk′,yp′,yk′W p(ap′, ak

′
, yp′, yk

′
)
}
, (31)

W k(x) =max
c̃k

{
u
(
c∗(c̃k, ãk)

)
+ βEϵp′,ϵk′,yp′,yk′W k(ap′, ak

′
, yp′, yk

′
)
}

(32)

s.t. (30),

ln ap′ = ln(ap + yp − cp − g) + r + σϵp′, (33)

ln ak
′
= ln(ãk − c∗(c̃k, ãk)) + r + σϵk

′
, (34)

where the last two equations follow from the budget constraints and the the law of motion
for assets. The first two equations are the usual Bellman Equations, noticing here that the
agents’ choices also have effects on the other player. We now solve this system using our
algorithm, guessing that optimal transfers satisfy the transfers-when-constrained property:
Parent gifts only flow when the child has zero assets and the child always consumes up any
gift from the parent.

Independent FOCs. As in the basic consumption-savings model from Section 2, play-
ers’ choices affect only the mean of their own asset distribution, but not the variance pa-
rameter nor the other agent’s assets. When approximating the conditional distribution to a
first order in its moments, it turns out that interactions between agents’ contemporaneous
choices are of second order and the agent’s consumption-savings choice becomes indepen-
dent of what the other agent chooses at the same moment, thus simplifying computation
enormously17 It is not a coincidence that this independence is exactly what Barczyk &
Kredler (2014) find in the continuous-time limit, since also there higher-order terms van-
ish. The economic intuition is as follows: The other player’s current choice only moves

17. . . although the other agent’s future choices matter, as they show up in the continuation value. Mathe-
matically, independence of shocks implies that the conditional density function over states x′ is given by a
product over the conditional densities in each dimension, i.e. f(x′|x, sp, sk) = f (p)(ap′|sp)f (k)(ak

′|sk) . . . ,
where the savings choices sp and sk govern the mean moments in the asset dimensions. When approximating
f to a first order around reference values (s̄p, s̄k), only s̄k shows up in the parent’s first-order condition, but
not the child’s sk − s̄k from the reference policy. This is because

∂f(x′|·)
∂sp

=
∂f (p)(·)
∂sp

f (k)(ak
′|s̄k) . . .
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the state variables by very little (since consumption is a flow variable), thus leading to
only small changes in the marginal value of savings. It has to be noted that the first-order
approximation in our discrete-time setting here is good under two conditions: i) the time
horizon is short (which implies that the state does not stray far from its reference value)
and ii) the continuation value is differentiable in the asset dimensions (which is ensured by
the noise in the asset variables).

4.3 Results and comparison of algorithms

Results. Figure 4 shows the equilibrium. We notice that its properties are exactly in with
Figures 2-4 in Barczyk & Kredler (2014), when adjusting for the fact that the child is not
altruistic and thus no transfers flow child-to-parent and that parameter values are different.
The transfer function is linearly increasing in parent wealth, transfers flowing only when
the child is constrained and from some threshold level of parent wealth on. Consumption
is only a function of agents’ own assets in the part of the state space in which the child is
relatively rich and gifts are unlikely in the near future. However, the child starts to consume
more (and the parent less) than once the economy is close to the transfer region (which is
the termed the “overconsumption (OC) region” by Barczyk & Kredler (2014)). Finally,
we observe the characteristic discrete drop in child consumption once the child receives
transfers.18

Gains from tensor approach. In this high-dimensional example (4D), it turns out that
it is not advantageous to calculate the full transition matrix of states for the approximating
Markov chain. We call this explicit approach the Markov-Chain (MC) Kronecker method
since it requires a Kronecker product of the four transition matrices for each dimension.
Figure 5 shows the time savings that occur from a different approach (MC Tensor) that
avoids calculating this large transition matrix. We see that the time savings are very sub-
stantial and that computation time increases much slower in grid size under the MC Tensor

18Also, we observe that the transfer and consumption functions increase sharply at the upper end of the
asset grids, which occurs because we reflect assets back into the grid for high shocks, thus disincentivizing
savings in this region. In applications, this region should be discarded, i.e. the economy should only reach
this region with negligible probability, which can be achieved by choosing the upper bound of the asset grid
high enough. Unlike Barczyk & Kredler (2014) we show this region here since the computational algorithm
and not the economic problem is of main interest here.
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Figure 4: Equilibrium in altruism model

Parameters (1 period ≃ one quarter): γ = 2, α = 0.5, β = 0.99, r = 0.005, σ = 0.025, ŷp = [0.2, 0.25],
ŷk = [0.225, 0.275], income transition matrix: F(y) = [0.95, 0.05; 0.025, 0.975]. Grids: Na = 40, Ny = 2.

Results shown for high parent and low child income.
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Figure 5: Algorithm performance in altruism model

Duration of value-function iteration loop in altruism model (parameters as in Fig. 4), Markov-Chain (MC)
Kronecker vs. MC Tensor algorithm. Red numbers next to data points show ratio between MC Kronecker

and MC Tensor duration.

than under the MC Kronecker approach, thus avoiding the curse of dimensionality.
How does MC Tensor realize these large speed gains (more than 70-fold for asset grid

size 50)? We give a brief intuition here for a simple 2D example that we sketch in Fig. 6;
Prop. B.1 in the appendix provides a formal result that allows to estimate the number of
operations necessary under each approach.19 In the figure, the MC Kronecker approach fol-
lows each single “path” when computing a continuation value, thus computing all products
in the expectation Ex′

1,x
′
2
[V ′] with associated probabilities F (1)

j1.
F

(2)
j2.

.20 In the 2D case, this
leads to a total of N1N2 paths; with more dimensions this number increases multiplicatively
with the number of grid points. However, there is another, sequential, way of attacking the
problem that is more in the spirit of dynamic programming: MC Tensor exploits the ten-
sor structure of the problem that follows from independence of shocks.21 We can bundle

19These speed savings are known in the literature, see Fackler (2019) and the references therein. We
provide a proposition here to have all relevant results in one place.

20We focus here on the (backward) computation of continuation values, but the same gains obtain for
computing any other expectation or for mapping forward distributions over time.

21Or, more precisely, from the fact that transition probabilities on the large state space are given by simple
products of the transition probabilities in the single dimensions.
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information in shorter stages and apply the shocks in the two dimensions sequentially, first
calculating an intermediate value function Ex′

2
l[V ′] and then using this to find the contin-

uation value V = Ex′
2
[Ex′

1
[V ′]]. The number of multiplications is only N1 + N2 in this

example, and it grows additively (and not multiplicatively) as we add more dimensions.

x̂ = (1, 1)

x̂
(1)
1 x̂

(1)
N1

. . .

F(1) N1

x̂
(2)
1

. . . x̂
(2)
N2

x̂
(2)
1 x̂

(2)
N2

. . .

F(2) N2 F(2) N2

Figure 6: 2D Markov chain with independent shocks

Diagram for Markov chain with n = 2, starting at one fixed grid point x̂. Solid arrows: state transitions.
Caption inside boxes: new state after transition. Captions left of arrows: transition matrix associated with

transition. Captions between arrows: number of possible transitions in stage.
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5 Conclusion

We have proposed a Markov-chain approximation method for discrete-time control prob-
lems in order to reap the computational benefits of the continuous-time algorithms. We
achieve this by taking a first-order approximation of conditional distributions in their first
and second moments around a reference point. We show how to apply the method to stan-
dard consumption-savings problems and portfolio choice problems. Speed gains of the
proposed model are up to two orders of magnitude compared to the state-of-the-art en-
dogenous grid method. At the same time, we observe no significant sacrifices in terms
of algorithm accuracy. Measured both policy functions and Euler equation residuals, the
proposed approach does not appear less accurate than the benchmark methods, even in a
model parametrized to a (relatively long) annual frequency.

We show how our method avoids the curse of dimensionality and keeps computation
times manageable in high-dimensional problems with independent shocks. Furthermore,
our approach can substantially simplify the computation of dynamic games with a large
state space, solving a discrete-time version of the altruistic savings game studied by Bar-
czyk & Kredler (2014).

Finally, the benefits and potential drawbacks of the proposed method are discussed, and
the general recipe and recommendations are provided.
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A The cookbook recipe

In this appendix, we explain the algorithm that we propose in general terms. We will
denote vectors by bold lower-case letters (e.g. a), matrices by bold upper-case letter (A)
and functions and scalar variable by plain lower-case letters (x, f(·)). When indexing
single elements of vectors and matrices, we drop the bold face and write aj , Ai,j; we use
brackets to collect all elements to a vector or, e.g. A = [Ai,j]. To index an entire matrix
column, we write A,̇j , where the dot indicates that the index i runs over all positions, thus
returning a column vector. We denote the matrix transpose by a T -superscript (AT ) and
reserve primes (x′) for one-period-ahead variables, following the notation that is standard
in dynamic programming. We let the operator ◦ denote element-by-element multiplication;
in the case of multiplication of a vector by a matrix, a◦B, it is understood that all elements
of jth row of B are multiplied by the vector element aj . We denote objects in the true
underlying problem by plain letters (f ) and the corresponding approximating objects in
our algorithm with hats (f̂ ) if there is a risk of confusion; however, we omit the hat when
there is no such risk, e.g. when denoting the vector f that approximates the functionf(·).

A.1 General dynamic-programming problem

Consider a dynamic-programming problem with state vector x = (x1, . . . , xn) ∈ X ⊂ Rn.
We place the c ≤ n continuous state variables (e.g. assets) in the first positions of the state
vector and assume that xi ∈ Xi for i = 1, . . . , c, where Xi ⊂ R are closed intervals. There
are d = n− c discrete state variables with xj ∈ Xj = {1, 2, . . . , Nj} for j = c+ 1, . . . , n.
The control vector is u ∈ U ⊂ RNu , whose dimension Nu may be larger, equal, or smaller
than n. The feasible set for the control is given by a correspondence Γ : X ⇒ U . The agent
faces a return function J : X × U → R and discounts the future with the factor β ∈ (0, 1).
The law of motion is probabilisitic: The state at t+1, which we denote by x′, is distributed
according to a parametric distribution f(x′|z), thus f : X ×Z → R+

0 . Here, z ∈ Z ⊂ RNz

is a vector of moments for the c continuous state variables
The moments, in turn, depend on the state and the chosen control through a function

z = z(x,u), where z : X × U → Z. The Bellman Equation characterizing the value
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function W : X → R of the underlying problem is

Wt−1(x) = max
u∈Γ(x)

{
J(x,u) + β

∫
Wt(x

′)df(x′|z(x,u))

}
. (35)

For finite-horizon problems, we have a function WT (·) given at the final period T and iterate
backward on (35) for t = T − 1, . . . , 1. In infinite-horizon problems, the time subscript on
the value functions in (35) is dropped and the Bellman Equation characterizes a fixed point
W (·) of the finite-horizon recursions.

A.2 General algorithm

We first give a brief overview of our algorithm in the default setting, that is under infinite
horizon and an approximation by first and second moments. We will then give further
explanations and recommendations and discuss alternative choices (including the finite-
horizon case) in the following subsection.

1. Place grids {x̂(i)
j }Ni

j=1 with Ni elements on each of the continuous dimensions i =

1, . . . , c. Denote by X̂ the set of points on the resulting n-dimensional Cartesian
grid, which has N ≡

∏n
i=1Ni = |X̂| elements (including now also the discrete

dimensions). Furthermore, we denote by x̂ ∈ X̂ a typical grid point and by X ∈
RN×n the matrix that lists in each row the values that the state variables take on this
grid.

2. Law-of-motion/return-function approximation (optional step). Create a function
ẑ(x,u) that approximates the law of motion z(·). This can be done i) by writing out
flow variables as x∆t and then dropping the lowest-order terms or ii) approximating
controls by ui = ūi + ∆ui, taking a Taylor expansion of the law of motion (and
possibly the return function) in the {∆ui} and keeping only the highest-order terms.
In the value-function-iteration loop, then use the previous guess for the policy as ūi.

3. Modified Tauchen step. Specify a probability distribution f̂(x̂|z), f̂ : X̂×Z → R+
0 ,

over the grid X̂ that approximates the continuous-support distribution f(x|z).
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4. Linear moment approximation: For each fixed state x̂ ∈ X̂ (at time t), we now
approximate the distribution f̂ over x′ (at time t + 1) given a fixed control vector u
as follows:

(a) Choose an expansion point z̄(x̂) ∈ RNz for the moments z at each grid point
x̂. This pins down the reference distribution f (0)(x̂) ≡ f̂(x̂|z̄(x̂)) ∈ RN at each
grid point.

(b) For each moment zl in z, l ∈ {1, . . . , Nz}, approximate the derivative/gradient
of f̂(·) in zl evaluated at the expansion point z̄(x̂) and denote it by the vector
d(zl)(x̂) ∈ RN .

Combine (a) and (b) to obtain the following Taylor approximation for f̂ given a
choice u ∈ Γ̂(x̂):

f(x̂,u) = f (0)(x̂) +
Nz∑
l=1

[
zl(x̂,u)− z̄l(x̂)

]
d(zi)(x̂) ∈ RN . (36)

To obtain the transition matrix on the discretized state space, we now stack controls
into a matrix U = [u(x̂)T ]x̂∈X̂ ∈ RN×Nu , each row containing the control vector
for one Cartesian grid point. Similarly, create N ×N matrices F(0) ≡ [f (0)(x̂)T ]x̂∈X̂
for the reference distributions and D(zl) = [d(zl)(x̂)T ]x̂∈X̂ for the derivatives, for all
l ∈ {1, . . . , Nz}. The transition matrix of the approximating Markov chain, given a
control matrix U, can be written as

F(U) = F(0) +
Nz∑
l=1

[
zl(X,U)− z̄l(X)

]
◦D(zl) ∈ RN×N , (37)

where zl(X,U) and z̄l(X) are understood to be the N × 1 vectors that result from
applying the functions zl(·) and z̄l(·) on each row of the input matrices separately.

5. Ensuring positive transition probabilities. For each grid point x̂, specify an ad-

missible set Γ̂(x̂) such that all elements of f(x̂,u) in (36) are positive given any
u ∈ Γ̂(x̂).
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6. Value-function iteration loop: Specify an initial guess w(0) ∈ RN for the value
function W (·) evaluated at the Cartesian grid points in X̂ and fix a convergence
criterion ϵ > 0 (small). Then, for s = 0, 1, . . . , solve the following (approximate)
Bellman Equation:

w(s+1) = max
U∈Γ̂

{
J(X,U) + β

(
F(0)w(s) +

Nz∑
i=l

[zl(X,U)− z̄l(X)] ◦ [D(zl)w(s)]
)}

,

(38)

where max is understood in the sense that each row u(x̂)T of U is chosen such
that the criterion for grid point x̂ (the respective element of the vector in the curly
brackets) is maximized. Denote by U∗(s+1) the optimal control matrix at iteration s.
Once the value function converged, i.e. once ||w(s+1)−w(s)|| ≤ ϵ at iteration s = s∗,
store the converged solution w∗ = w(s+1) and U∗ = U∗(s+1) as well as the transition
matrix F∗ associated with the optimal control, which is obtained by setting U = U∗

in (37).22

7. Distribution iteration loop: Fix some initial distribution g0 ∈ RN , where g0,i ≥ 0

for all i and where
∑N

i=1 g0,i = 1. Then, iterate for s = 1, 2, . . . on

gs+1 = (F∗)Tgs

until convergence to the stationary distribution g∗.

8. Sampling paths {x̂t}St=1 from the approximating Markov chain. Fixing an initial
x̂0 ∈ X̂ , for t = 0, 1, . . . , S − 1 draw x̂t+1 from the probability distribution that is
given by the row of F∗ that corresponds to state x̂t.

A.3 Details and recommendations

We now discuss details on each of the steps in the above algorithm and give some recom-
mendations. We start by explaining how to adapt the algorithm to a finite horizon.

22We opt for the standard choice ||x|| = maxi∈{1,...,N}{xi}, but any norm on RN is legitimate here. Also
other convergence criteria here, e.g. convergence in policy functions or Euler-equation errors.
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Finite-horizon case. The algorithm above can be adapted to finite-horizon problems
making only minor adjustments. In Step 6 (value-function iteration loop), the terminal
value function w(T ) is exogenously given by the problem and the recursions in (38) now
run for s = T, T − 1, . . . , 0. Optimal controls U∗(t) and associated transition matrices
F∗(t) have to be stored in each iteration. In Step 7 (distribution iteration loop), the initial
distribution g(0) is given by the problem and the recursions run from t = 1 to T ; Step 8
(drawing paths) has to be adjusted analogously.

Grids. Grids may be linearly spaced, but need not be. As always, it is advisable to use
many grid points in areas where shocks are small and/or policies are expected to vary a lot.
For shocks that are proportional to the level of a variable, we recommend logarithmic grids.

Distribution f(·) and moments z.

1. Shape. While other choices are covered by our algorithm, our recommended choice
for the distribution f(·) is a multivariate normal distribution over the continuous di-
mensions, N (m,V). m ∈ Rc is the first moment (mean) vector and and V ∈ Rc×c

is the covariance matrix. The moment vector is z = [m, triag(V))], where the op-
erator triag picks off the upper triagonal of the matrix, thus omitting the repeated
entries below the diagonal of the symmetric matrix V. A first advantage of the nor-
mal distribution is that it is highly tractable; a second advantage is that it is the only
distribution that ensures consistency of the distributional shapes when we make time
increments smaller. This is the case for the same reason why Brownian Motion in
continuous time has normal increments: If we split periods in always shorter sub-
periods and assume independent shocks, then by the central limit theorem the sum
over the shocks will tend to a normal distribution.

2. Choice of moments. Related to the last point, we recommend by default to use all

means and (co)variances in the continuous dimensions as elements of the moment
vector z. However, our algorithm also covers the case in which z only covers a sub-
set of moments, e.g. when the agent can only affect the mean (but not the variance
of f ); we did so in the basic consumption-savings problem where we chose savings
s = z as one parameter that affected both the conditional mean and variance of fu-
ture assets, a′. What is key (and should always be checked) when restricting z to a
subset of moments is that the resulting approximating distributions f(·) indeed give a
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good approximation of f , at least in the first and second moment. We note here that
choosing the moments as the mean and (co)variance matrix has the advantage that
the approximating distributions in (36) conserve the variance of the underlying dis-
tribution, at least to a first-order approximation, as the following proposition shows:

Proposition A.1 (Mixtures first-order accurate for mean and variance) Let Xi,

i ∈ {1, . . . , n}, be a sequence of random variables with mean µi = E[Xi] and vari-

ance σ2
i = E[Xi − µi]

2. Let X be a random variable that is drawn from a mixture

with weights {wi}ni=1 of these n distributions, where wi ≥ 0 and
∑n

i=1wi = 1. Then:

µ = E[X] =
n∑

i=1

wiµi, (39)

σ2 = E[X − µ]2 =
∑
i=1

wiσ
2
i if µi = µ ∀i ∈ {1, . . . , n}, (40)

σ2 = E[X − µ]2 =
n∑

i=1

wi(∆i)
2 +

∑
i=1

wiσ
2
i where ∆i = µi − µ. (41)

(Proof to be completed, follows from algebra). The proposition says that approxi-
mating mixtures get the mean right always and the variance in case that the means of
all distributions coincide. If both mean and variance vary across the mixed distribu-
tions, then the approximation error for the variance goes to zero as we make the grid
finer and thus ∆i → 0.

Importantly, we note here that first-order accuracy is not guaranteed for other choices
of the moments than mean and variance. For example, if we parameterized the uni-
variate standard normal distribution using the standard deviation σ instead of the
variance σ2, the linear approximations for f would have first-order approximation
errors in terms of the second moment.23

23One may be tempted to just choose the controls themselves as the moments, i.e. to set z = u. However,
this often leads to problems, as the following example shows. In the portfolio problem, this would mean to
parameterize the distribution by consumption c and the portfolio share x in the portfolio problem. However,
this makes the quadratic terms in x disappear in the first-order condition for x, thus leading to a bang-bang
solution for x∗. This is an example in which an inappropriate choice of moments leads to a bad approximation
of the distribution and to counterfactual properties for the solution.
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3. The law of motion for the discrete state variables is, by default, given by exoge-
nous Markov transition matrices. However, our algorithm can easily be generalized
to the case in which the controls affect also the transition matrices in the discrete
dimensions.

Expansion point z̄. For mean moments, we recommend to set the expansion points on
the grid points themselves, i.e. to choose z̄l(x̂) = m̄i(x̂) = x̂i for a mean moment l and
the corresponding dimension i. This choice implies that the drift (i.e. the expected time
increment) is zero under the reference distribution (in line with what analogous continuous-
time algorithms do). This has the advantage that the expansion point is always a good one as
we let the time increment go to zero (at least for continuous laws of motion). However, we
note that the algorithm is still well-defined for other choices of m̄i. Unlike drifts, reference
variances v̄ii(x̂) should be positive and the matrix v̄(x̂) should be positive definite in order
to yield proper probability distributions for the approximating Markov chains.

Admissible set Γ̂. The admissible set should be chosen such that the approximating
vectors f(·) in (36) are proper probability distributions, i.e. that all elements of f are non-
negative and sum up to 1. If a control affects only the mean of one variable, this can usually
be achieved by restricting the control such that the state cannot move farther than one grid
point up or down (in the continuous dimensions) in one time period and by using upwind
gradient approximations (see below). For example, in the basic consumption-savings prob-
lem we restricted the choice of savings to the interval between adjacent grid points, i.e.
we set Γ̂(x̂j) = [x̂j−1, x̂j+1] at grid point x̂j . We then construct forward and backward
gradients such that f̂ is a convex combination of the distributions that are obtained when
choosing s ∈ {x̂j, x̂j+1} (for a saver) or s ∈ {x̂j, x̂j−1} (for a dissaver).24

Approximating f by f̂ . In principle, any reliable method that discretizes a continuous-
support random variable can be used here. Some choices are as follows:

1. If there is only one continuous dimensions the (c = 1), one can approximate f̂ by
simply calculating the probabilities under the true f of landing in a bin corresponding

24Positive probabilities are necessary so that i) the convergence proofs for Markov-chain control prob-
lems hold and ii) the calculation of the distribution (Step 7) and simulations (Step 8) in our algorithm work.
However, we note here the Taylor approximation of the transition probability vector in (36) is valid even if
probabilities are negative, implying that the value-function-iteration loop can still succeed and return good ap-
proximations even when negative probabilities occur. In our examples, however, we found that the algorithm
often fails to converge once negative probabilities become too large in absolute value.
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that corresponds to a grid point as25

f̂(x̂|z) = F
(
(x̂j+1 + x̂j)/2|z

)
− F

(
(x̂j + x̂j−1)/2|z

)
, (42)

where F (·|z) denotes the cdf of f(· |z) for a fixed z. At the lower (upper) grid mar-
gins, the upper and lower bin bounds have to be replaced by ±∞. This procedure is
used in our function TransMat.m. The method can also be used in the multivariate
case, i.e. c > 1, if shocks are independent across the continuous dimensions; one
can then obtain the marginal probability for each dimension separately as in (42) and
then multiply to obtain the joint probability.

2. Integrate the density (or approximate the integral by quadrature) in the multi-variate
case, analogous to the integration in (42) for the one-dimensional case.

3. Monte-Carlo simulation: Draw the underlying shocks using a random-number gener-
ator and count how many draws of x′ fall into an area representing a grid point. This
method has the advantage that it is simple, but has the drawback that it introduces
additional sampling error.

Again at this point, it is advantageous to work with normal distributions. In the portfolio
choice problem, for example, assuming log-normal distributions for the safe and risky re-
turn leads to a asset distribution that has no closed form for the density, being a sum of
two log-normals, thus complicating the calculation of probabilities. Under our bivariate
normal assumption, however, the sum of the two returns is again normally distributed and
probabilies are easily computed.26

Derivative vectors d(zl). We recommend to approximate the derivatives using dif-

ference quotients, as they are common in numerical work. For each moment zl, l ∈
{1, . . . , Nz}, specify increment vectors ∆+

l ,∆
−
l ∈ RNz that are zero except a positive

entry on the lth position. Then the difference quotients are defined as:

25This is the method used by Tauchen (1986).
26We note here that the normal distribution has similar shape to the log-normal once time periods become

small, thus the approximation error is small even if the true return distribution was log-normal.
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1. forward:

d(zl)+(x̂) =
f̂
(
x̂|z̄(x̂) + ∆+

l

)
− f̂

(
x̂|z̄(x̂)

)
||∆+

l ||

2. backward:

d(zl)−(x̂) =
f̂
(
x̂|z̄(x̂)

)
− f̂

(
x̂|z̄(x̂)−∆−

l

)
||∆−

l ||

3. upwind: use the forward quotient if zl(x̂,u) > z̄l(x̂) and the backward quotient
otherwise.

4. centered:

d(zl)c(x̂) =
f̂
(
x̂|z̄(x̂) + ∆+

l

)
− f̂

(
x̂|z̄(x̂)−∆−

l

)
||∆+

l ||+ ||∆−
l ||

For mean moments, i.e. if zl = mi for dimension i, then we recommend to choose the incre-
ments ∆+

i and ∆−
i as the distance to the adjacent grid points. When one restricts the feasible

set Γ̂ such that the state cannot move more than one grid point away, then the upwind ap-
proach boils down to taking convex combinations of the distributions at the three adjacent
grid points. This is the approach we followed in the basic consumption-savings problem.
It has the advantage that it automatically guarantees that the approximating distributions
are proper probability distributions. The other three approaches (forward, backward, cen-
tered) have the advantage that they only require to calculate one instead of two gradients,
and only one FOC (not two) has to be evaluated for the control(s). An advantage of the
centered quotient is that it provides a second-order accurate estimate of the derivative at x̂,
which is not the case for the other approaches. Thus, we recommend the centered quotient
over the backward or forward quotients.

In principle, one could also approximate the derivatives based on the analytical deriva-
tives of the pdf f(·) in the moments. A drawback of this approach is, however, that it
is not guaranteed that the approximating probability distributions f sum to one, since the
components of d̂i need not sum to zero. Note that this normalization property is ensured,
however, for the difference quotients 1.-4. since we use proper probability distributions
when constructing them.

Finding the optimal control. In many of our examples, we could find a closed-form
solution for the optimal control u∗

s+1 in the approximating Bellman Equation (38) using
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first-order conditions. We note that this often occurs although there is no closed-form so-
lution in the true Bellman Equation (35). Closed-form expressions speed up the algorithm
considerably since they avoid costly nonlinear-solver or root-finding routines. The reason
for these simplifications is that the approximation drops higher-order effects that controls
have on the distributions, as is the case in the continuous-time HJB.

Law-of-motion approximation. It can be the case that (even after using the linear-
moment approximation) no closed-form solution for the optimal control obtains in the ap-
proximate Bellman Equation, while the corresponding continuous-time HJB does yield
a closed-form solution. We found this to be the case in the portfolio problem; the rea-
son being that second-order terms are present in the moment function that drop out in the
continuous-time limit.

(Modified) policy function iteration. The usual principles for dynamic-programming
algorithms in general and for Markov-chain-approximation algorithms in particular apply
to the approach we propose. We recommend Phelan & Eslami (2021), an excellent in-
troduction to Markov-chain approximation methods in economics; they study the relative
efficiency of policy-function-iteration algorithms, however in the context of continuous-
time problems. Policy function iteration means to find (at each step of value-function it-
eration) the value that obtains from applying the current policy guess forever (this is also
sometimes called the “Howard improvement algorithm”). Modified policy function itera-

tion, in turn, means that the current policy is only applied for K ≥ 1 periods instead of
forever. Formally, consider the following equation that updates a value function applying
the policy found in step s. Initiating with the value-function guess from the last iteration,
v(s,0) = w(s−1), compute for k = 1, . . . , K:

v(s,k+1) = J(X,U∗(s)) + βF(U∗(s))v(s,k), (43)

i.e. apply the policy U∗(s) for k periods. Finally, use the obtained value as the new guess,
i.e. set w(s+1) = v(s,K+1). Note here that value function iteration obtains as a special case
when setting K = 1 and (classical) policy function iteration obtains when letting K → ∞;
the value function for the latter case can also be computed as the solution to the linear
system [

I− βF(U∗(s)))
]
w(s) = J(X,U∗(s)), (44)
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where I is the N × N identity matrix. This equation can be solved using a sparse linear
solver (as is done, e.g., by Achdou et al. (2022) for an analogous continuous-time prob-
lem). As Phelan & Eslami (2021), we find that modified policy function iteration yielded
the largest speed gains in our applications and that policy-function iteration was only ad-
vantageous in low-dimensional applications (n ≤ 2). The reason is that once the number
of transitions between states increases, approximating the solution to (44) by K successive
iterations as in (43) becomes more efficient than solving a large system of equations.

Comparison to continuous-time HJB. We can re-write Eq. ?? for the converged solu-
tion w∗, spelling out the mean and (co)variance components of the moment vector z:

(
I− βF(0)

)
w∗ = max

U∈Γ̂

{
J(X,U) +

c∑
i=1

[mi(X,U)− m̄i] ◦ [D(mi)w∗] (45)

+
c∑

i=1

c∑
j=i

[vij(X,U)− v̄ij] ◦ [D(vij)w∗]
)}

,

which compares to the continuous-time HJB

ρV (x) = max
u∈Γ(x)

{
J(x,u) +

c∑
i=1

m(x,u)Vi +
1
2

c∑
i=1

c∑
i=1

vij(x,u)Vij

}
+ jump terms (46)

where ρ = ln β ≃ 1− β is the continuous-time discount rate corresponding to the discount
factor β, Vi is partial derivative in dimension i = 1, . . . , c and Vij denote the second partial
derivatives in the continuous dimensions. We see that the discrete-time Bellman equation
(45) corresponds closely to (46). In the pseudo-Hamiltonian in the max-operator, the terms
DmV take the role of the first value-function derivative, Vi, and DvV takes the role of the
Hessian, Vij . The term (I − βF(0))w∗ represents discounting (compare to ρV ) and jump

terms stemming from transitions in the discrete dimensions (contained in F(0)).

B Tensor approach under independent shocks

When shocks are independent across dimensions, exploiting the tensor structure of tran-
sition probabilities can to lead major speed gains. The higher the dimensionality of the
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state space, the larger these gains will be. For example, in our altruism application with
n = 4 dimensions and grid size (N1, N2, N3, N4) = (41, 41, 2, 2), the value-function iter-
ation loop can be sped up by a factor 70 (from 17.03 to 0.24 seconds) and the distribution
iteration loop by a factor 7 (from 0.28 to 0.04 seconds).27 What is the reason for these speed
gains? In a nutshell: It is fast to apply simple transition matrices sequentially dimension
by dimension, while it takes long to create and apply large transition matrices on the full
Cartesian state space. In this appendix, we draw on tensor notation from the literature that
is particularly well-suited to compactly describe the necessary numerical operations. We
also compare this notation to the commands in our Matlab code to illustrate these concepts,
which may not be familiar to many economists.

Setup. Consider again a general problem with n dimensions and c ≤ n continuous
state variables. Assume that shocks in the different dimensions are independent from each
other. This directly implies that all covariances are zero, i.e. that σij = 0 for all i ̸= j.
Assume that the transition density in the continuous dimensions under the true model is
given by functions fi(x′

i|xi;µi, σii), for i = 1, . . . , c, and that the transition probabilities in
the discrete dimensions are given by πj(x

′
j, xj) for j = c + 1, . . . , n.28 By independence,

the conditional probability density function (pdf) on the n-dimensional state space is given
by the tensor product

f(x′|x) =
c∏

i=1

fi(x
′
i|xi;µi, σii)

n∏
j=c+1

πj(x
′
j|xj). (47)

Notation. To keep track of values, distributions and the like, we will use n-dimensional
arrays (or tensors) instead of the N × 1 vectors that we used before (where again N =∏n

i=1 Ni). Following the notation in De Lathauwer et al. (2000), we will denote tensors
with calligraphic letters (e.g. A). For example, the approximate value function is now an
n-dimensional array (or order-n tensor) W ∈ RN1×N2×...Nn instead of the previous vec-
tor w ∈ RN .29 We index the elements of the tensorA by Aj1,j2,...,jn , analogously to ma-

27There is an additional gain of 1.5 seconds with the tensor approach before the loop when the transition
matrices have to be created.

28Again, our approach can be generalized to the case in which the controls affect also the transitions in the
discrete dimensions; we again omit this case here for brevity.

29The relationship between the two ways of denoting values is w = vec(W); we will introduce the vec-
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trix indexing Aj1,j2 , and write A = [Aj1,j2,...,jn ] to collect single entries to a tensor over
a range of indeces. In Matlab, a 4-dimensional (4D) array, for example, is allocated by
the command A = zeros(N1,N2,N3,N4), and an element is retrieved by indexing
A(j1,j2,j3,j4). We denote by {F(0,i)}ni=c+1, the Ni × Ni transition matrices in the
discrete states, which are exogenously given; entry F

(0,i)

ji,j′i
gives the probability of transi-

tioning from state ji to state j′i. Also, denote by {F(0,i)}ci=1 the Ni ×Ni transition matrices
on the grid for continuous dimension i that result from the reference drifts and variances,
{m̄i, v̄ii}ci=1.

Mode products. We first define an operation “tensor times matrix” that gives us a
notion of taking expectations over transitions in one dimension i, keeping the states in all
other dimensions fixed:

Definition 1 (i-mode product) Given a tensor A ∈ RN1×···×Ni×···×Nn and a matrix F(i) ∈
RMi×Ni , define the i-mode product A×i F

(i) ∈ RN1×···×Mi×···×Nn by

(
A×i F

(i)
)
j1,...,ji,...,jn

≡
Ni∑
j′i=1

F
(i)

jij′i
Aj1,...,j′i,...,jn

. (48)

Note that the sum in (48) weighs values by the transition probabilities from state ji to all
other states j′i of dimension i. Thus, the mode-i product captures the operator Ex′

i
[·|xi], as

claimed before. For example, we can take an expectation of a value W ′ at t+ 1 before the
shock in dimension i hits as W ′ ×i F

(0,i); this is the interpretation when moving backward

in time. Similar to what is the case for for conventional Markov chains, it turns out that
a mode product using the transposed transition matrix captures a notion of going forward

in time (the so-called adjoint property). The i-mode product with the transposed transition
matrix, P ×i F

(i)T , signifies that a distribution P over the n-dimensional state space is
mapped forward in time, applying only the transitions in dimension i:

(
P ×i (F

(i))T
)
j1,...,j′i,...,jn

=

Ni∑
ji=1

F
(i)

jij′i
Pj1,...,ji,...,jn . (49)

Here, we have stuck to the convention that ji denotes positions at t and j′i the position at

torization of tensors below.
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t + 1. In Matlab, we provide the function MatrixTimesArray that operationalizes the
i-mode product: MatrixTimesArray(F0i,W,i) returns W ×i F

(0,i). The function
uses Matlab’s built-in matrix multiplication, which is very efficient.30

Obviously, the mode-i product is similar to a matrix product; it shares some, but not all
of its properties:31

1. Distributive: A×i (F+G) = A×i F+A×i G (obvious)

2. ”Matrix chain rule”: A ×i (FG) = (A ×i G) ×i F (Property 3 in DeLathauwer et
al.)

3. Commutative across dimensions: For i ̸= j, (A ×i F) ×j H = (A ×j H) ×i F =

A×i F×j H. (Property 2 in De Lathauwer et al., SIAM 2000).

The first two rules are intuitive and hold for precisely the same reason as they do in con-
ventional matrix algebra.32 The third rule is particular to the tensor case, however: In our
context, commutativity across dimensions means that it does not matter in which order we
carry out the state transitions in the different dimensions (note here that this is true only
since we assumed that transitions are independent across dimensions).

Following Bader & Kolda (2006), we also introduce a notation for sequences of mode
products; this will give us a tensor notation for calculating expectations with respect to
transitions in all dimensions, i.e. the operator Ex′ [·|x], as we will show below:

Definition 2 (Sequence mode product) Let A ∈ RN1×···×Nn be an order-n tensor and let

{F} = {F(i)}ni=1 be a sequence of matrices satisfying F(i) ∈ RMi×Ni . Then, we define the

sequence mode product as

A× {F} ≡ A×1 F
(1) ×2 F

(2) · · · ×n F
(n) ∈ RM1×···×Mn . (50)

30The function reshapes and permutes the array W if necessary. The reshape commands in Matlab are
computationally cheap, whereas the permute commands are computationally more demanding since they
require the array to be re-written in memory. Permutes are thus only carried out if necessary, that is, only
when both n > 1 and i < n. For the case i = 1, matrix premultiplication (after a reshape) is used, wherease
matrix post-multiplication (after reshape) is used in the case i = n. In our applications, the cost of permuting
the array is easily outweighed by the gains from the tensor approach.

31All of these properties are stated under the assumption that the matrices and tensors are conformable.
32One way of deriving these rules is actually to convert the order-n tensor A ∈ RN1×···×Nn to a Ni ×

(N1 . . . Ni−1Ni+1 . . . Nn) matrix —this operation is called ”matricizing”, ”flattening” or ”unfolding” the
tensor, see Bader & Kolda— and then applying matrix algebra rules.
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Similarly, we define the sequence mode product in all dimensions except i as

A×−i {F} ≡ A×1 F
(1) · · · ×i−1 F

(i−1) ×i+1 F
(i+1) · · · ×n F

(n). (51)

Similarly, a sequence mode product with the transposes of all transition matrices, which we
will denote by P × {F(0)T}, signifies that a distribution P is mapped forward in time, ap-
plying the transitions in all dimensions. In the main result of this appendix, we will shortly
show that computing a sequence mode product is superior to a matrix product using a large
N × N transition matrices on the Cartesian state space (both for updating expectations
backwards and mapping distributions forward).

Vectorization. To do so formally, however, we first have to define the vectorization of
a tensor. We do this in the obvious way by extending the vectorization of matrices. For
order-2 tensors (matrices), we maintain the usual definition of vectorization, which is to
concatenate all columns of the matrix in a long vector. For an order-3 tensor (which can
be pictured as a sequence of matrices stacked behind each other on pages), we extend vec-
torization as is natural: We loop over all indices j3 = 1, . . . , N3 of the third dimension
(the pages), vectorize the matrices that obtain when fixing index j3 in the tensor, and con-
catenate the N3 resulting vectors to a large vector of length N = N1N2N3. We can then
generalize this operation recursively to higher dimension:

Definition 3 (Tensor vectorization) Recursively, for an order-n tensor A ∈ RN1×···×Nn

define

vec(A) = [vec(A...1), vec(A...2), . . . , vec(A...Nn)] for n = 2, 3, . . . , (52)

where A...jn denotes the order (n− 1) tensor that results when fixing index jn in dimension

n in A, but letting all indeces vary over their entire range. The recursions start with the

identity vec(A) = A ∈ RN1 for an order-1 tensor (vector).

In (52), the order-(n − 1) tensors A...i ∈ RN1×···×Nn−1 are called the slices of the tensor
A along dimension n. For n = 3, for example, the slices along dimension 3 are N1 × N2

matrices. In Matlab, vectorization of a tensor (n-dimensional array) A is simply achieved
by typing A(:).33 The ith slice of the tensor along the last dimension, A...i, can be obtained

33The output from this command also reflects how Matlab actually stores the array, which is as a sequence
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in by typing A(:,:,:,i) —here for a 4D array A—, which returns a 3D array.
We now have everything in place to convey the main message of this section: If shocks

are independent, use sequence mode products on multi-dimensional arrays, not matrix mul-
tiplication with a large Kronecker matrix. This result is well-known in the literature (see
Fackler (2019) and the references therein), but we state a proposition here to have all the
relevant results in one place.

Proposition B.1 (Sequence mode product beats equivalent Kronecker product) Let

W ∈ RN1×···×Nn be an order-n tensor, {F} = {F(i)}ni=1 a sequence of matrices satisfy-

ing F(i) ∈ RNi×Ni for all i, and let N ≡
∏n

i=1Ni. Then the sequence mode product is

equivalent to multiplication by the Kronecker product of the matrices {F(i)}, i.e.

vec(W × {F}) =
(
F(1) ⊗ F(2) · · · ⊗ F(n)︸ ︷︷ ︸

≡Fkron∈RN×N

)
vec(W) = vec

([∑
all j′

Wj′

n∏
i=1

F
(i)

ji,j′i

]
j

)
. (53)

Furthermore,

1. (speed comparison) The sequence product W ×{F} requires N(
∑n

i=1 Ni) multipli-

cations (and additions), being a factor N/(
∑n

i=1Ni) faster than the matrix product

Fkronvec(W), which requires N2 multiplications (and additions).

2. (order of sequence irrelevant) The sequence product can be computed in any order

over i ∈ {1, . . . , n}, each ordering resulting in the same number of multiplications

(and additions).

of numbers in memory arranged in the order of A(:) (note here that Matlab uses the column-major format).
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Proof: Observe that

W × {F} = W ×1 F
(1) · · · ×n F

(n)

=

[ N1∑
j′1=1

F
(1)

j1j′1
Wj′1,j2...,jn

]
×2 F

(2) · · · ×n F
(n)

=

[ N2∑
j′2=1

F
(2)

j2j′2

N1∑
j′1=1

F
(1)

j1j′1
Wj′1j

′
2j3...jn

]
×3 F

(3) · · · ×n F
(n)

= . . .

=

[∑
j′n

∑
j′n−1

· · ·
∑
j′1

F
(n)
jnj′n

. . . F
(1)

j1j′1
Wj′1,...,j

′
n

]

Vectorizing the tensor in the last line, one obtains the vector Fkronvec(W), thus justifying
Eq. (53). To show Point 1. of the proposition, note that in the first equality above, each
mode-i product requires NNi multiplications (and additions), from which it follows that
the sequence product requires N(

∑
Ni) multiplications (and additions); the statements on

the number of multiplications (and additions) in the matrix product Fkronvec(W), where
Fkron, follow from Fkron being an N × N matrix. To show Point 2. of the proposition,
note that the above derivation yields the identical result no matter which ordering of the
sequence product we choose in the first equality; also, each mode-i product requires NNi

multiplications (and additions) irrespective of the order of multiplication. ■
Two remarks are in order:

Remark B.1 (Relevance of sequence-product ordering) If at least one the matrices F(i)

were non-square, i.e. Mi ̸= Ni for some i, then there is an optimal ordering to compute the

sequence product, which is given in Fackler (2019).

Remark B.2 (Speed savings for sparse matrices) If the matrices {F(i)} are sparse with

an average number of Ñi < Ni non-zero entries per row, then the gain factor in Point 2. of

the proposition has to be replaced by Ñ/(
∑

Ñi), where we define Ñ ≡
∏n

i=1 Ñi.

Remark B.2 is proven following exactly the same steps as the proof of the proposition.
How large are the speed gains of Prop. B.1 in practice? In the example of the altruism

model, the savings factor is 40222/(2 · 40 + 2 · 2) ≃ 40 · 2 = 80, which is roughly in line
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with the factor 70 we obtain in our code. In a more general example with c continuous
dimensions with Nc grid points each and d discrete dimensions with Nd grid points each,
we obtain a savings factor N c

cN
d
d/(c · Nc + d · Nd) ≃ N c−1

c Nd
d/c, which we note to grow

very rapidly in the number and grid size of the continuous dimensions. For example, with
c = 3 continuous dimension à 100 grid points and 2 discrete dimensions à 10 grid points
(the total number of points on the Cartesian being N = 108, which is about what fits into
the RAM of a conventional computer) the accelaration factor is1002102/3 = 106/3, i.e. a
third of a million(!).

Calculating continuation values efficiently. We now return to the general control
problem with independent shocks and show how sequence products can be applied there.
To fix ideas, first consider an example with a 3D state space in which the agent controls the
drifts in the two continuous dimensions. That is, we set n = 3, c = 2 and z = (m1,m2).
The first-order approximation of the conditional density in the moments z = (m1,m2) is
then

f(x′|x,m1,m2) =f (1)(x′
1|x1,m1)f

(2)(x′
2|x2,m1)π3(x

′
3|x3)

≃ f (1)(x′
1|x1, m̄1)f

(2)(x′
2|x2, m̄2)π3(x

′
3|x3)︸ ︷︷ ︸

transitions under reference drifts (m̄1,m̄2)

+ (m1 − m̄1)f
(1)
m1

(x′
1|x1, m̄1)f

(2)(x′
2|x2, m̄1)π3(x

′
3|x3)︸ ︷︷ ︸

adjustment for drift in dimension 1

+ (m2 − m̄2)f
(2)
m2

(x′
2|x2, m̄2)f

(1)(x′
1|x1, m̄1)π3(x

′
3|x3)︸ ︷︷ ︸

adjustment for drift in dimension 2

, (54)

where f
(i)
mi denotes the partial derivative of f (i)(·) in mi. The first equality in (54) follows

from the independence assumption; the following approximation is then as in (36) in the
main text, but exploiting independence (the tensor structure). Importantly note that in each
summand in the Taylor expansion,we only have to take partial derivatives in one of the
functions f (i) while keeping the others fixed.

Moving on to the discretization, we now approximate the functions in (54) by vectors.
The transition probability from the (Cartesian) grid point x̂ ∈ X̂ ⊂ R3 indexed by j =
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[j1, j2, j3] to grid point x̂′ ∈ X̂ indexed by j′ = [j′i] is

F[j,j′]|(m1,m2) = F
(0,1)

j1j′1
F

(0,2)

j2j′2
F

(0,3)

j3j′3︸ ︷︷ ︸
transition under reference drifts

+(m1 − m̄1)D
(m1)

j1,j′1
F

(0,2)

j2,j′2
F

(0,3)

j3,j′3︸ ︷︷ ︸
adustment for drift in dim. 1

+ (m2 − m̄2)D
(m2)

j2,j′2
F

(0,1)

j1,j′1
F

(0,3)

j3,j′3︸ ︷︷ ︸
adustment for drift in dim. 2

, (55)

where we denote byF(0,3) = [π(x̂
(3)
j3
, x̂

(3)

j′3
)] ∈ RN3×N3 the transition matrix in the discrete

dimension and by F(0,1) and F(0,2) the transition matrices in the continuous dimensions
given the reference drifts m̄1 and m̄2. Also, D(mi) ∈ RNi×Ni is the derivative matrix in
dimension i = 1, 2 with respect to mi. In particular, the jith row of the derivative matrix,
D

(mi)
ji.

, tells us how the reference distribution in dimension i, (the jith row of the matrix
F(0,i)) changes when the drift mi changes marginally at the expansion point. Conveniently,
the derivative matrices D(mi) can be constructed exactly as described in the main text for
the one-dimensional case. Note that in (55), the matrix entries D

(i)

ji,j′i
play the role of the

partial derivatives f
(i)
mi in (54) and the entries F

(0,i)·
ji,j′i

play the role of the transition density
f (i)(·) under the reference drift.

Using (53) from Prop. B.1, we can now collect all grid points in (55) and write the
continuation value C = E[W ′|·] at t given a value function W ′ at t+ 1 in tensor form:

C(M1,M2) = W ′ × {F(0)}︸ ︷︷ ︸
exp. value under reference drifts

+(M1 − M̄1) ◦
(
W ′ ×1 D

(m1) ×2 F
(0,2) ×3 F

(0,3)︸ ︷︷ ︸
derivative of contin. value in m1

)
+ (M2 − M̄2) ◦

(
W ′ ×2 D

(m2) ×1 F
(0,1) ×3 F

(0,3)︸ ︷︷ ︸
derivative of continuation value in m2

)
, (56)

where Mi,M̄i ∈ RN1×···×Nn , i = 1, 2, are order-n tensors that collect the mean moments
mi and their expansion points m̄i across the Cartesian grid and where ◦ denotes element-
by-element multiplication of two tensors. (56) is called a backward equation since it tells
us how to update backward in time.

Following the idea for the 3D example, we now generalize to the general n-dimensional
case with a general moment vector z ∈ RNz . To do this, we first introduce some more
notation. Denote by i∗(l) the function that tells us the dimension that the moment zl in z
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addresses, where i∗ : {1, . . . , Nz} → {1, . . . , n}. For example, if z = (m1,m2, v2), then
we have i∗(1) = 1 (since the first moment in z refers to dimension 1) and i∗(2) = i∗(3) = 2

(since the other two moments refer to dimension 2). We also define the inverse of the
mapping i∗(·): Denote by Z∗(i) ≡ {l : i∗(l) = i} the set of indices of the moment
vector z that refer to dimension i, thus defining a function mapping {0, . . . , n} to subsets
of {1, . . . , Nz}. In our previous example with z = (m1,m2, v2), for example, we have
Z∗(1) = {1} and Z∗(2) = {2, 3} .

Backward equation. With this notation in place, we now write the analog of (55). The
transition probability from the grid point indexed by j = [j1, . . . , jn] to grid point j′ = [j′i]

given moments z is

F[j,j′]|z =
n∏

i=1

F
(0,i)

jij′i︸ ︷︷ ︸
trans. under reference moments

+
n∑

i=1

∑
l∈Z∗(i)

(zl − z̄l)D
(zl)

ji,j′i

∏
k ̸=i

F
(0,k)

jk,j
′
k︸ ︷︷ ︸

adjustment due to moment zl in dim. i

, (57)

where we denote by D(zl) ∈ RNi∗(l)×Ni∗(l) the derivative matrix that tells us how the dis-
tribution across dimension i∗(l) changes upon a marginal increment of the moment zl.
Collecting again all Cartesian grid points to tensors, we obtain the continuation value as
the following backward equation

C
(
{Zl}Nz

l=1

)
= W ′ × {F(0)}︸ ︷︷ ︸

≡C(0)≃E[W (x′)|x,z̄(x)]

+
Nz∑
l=1

(Zl − Z̄l) ◦
(
W ′ ×i∗(l) D

(zl) ×−i∗(l) {F(0)}︸ ︷︷ ︸
≡C(zl)≃dE[W (x′)|·]/dzl

)
,

(58)

where the tensors Zl, Z̄l ∈ RN1×···×Nn again collect the moments zl and their reference
points z̄l across the Cartesian grid. The first term, C(0), gives the continuation value under
the reference moments z̄(x); the terms C(zl) capture the derivative of the the continuation
value in moment zl and are multiplied point-wise with the deviation of that moment from
its reference value. Note here that for each of the summands in (58), the speed gains from
Prop. B.1 arise when computing them by sequence mode products.

Forward Equation. There is also a forward equation corresponding to the backward
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equation (58) that tells us how to map a distribution forward in time:

P ′ =
Nz∑
l=1

[
1
Nz

P ×i∗(l) F
(0,i∗(l))T +

(
P ◦ Z̃(l)

)
×i∗(l) D

(i∗(l))T
]
×−i∗(l)

{
F(0)T

}
. (59)

It can be verified that (59) leads to the correct sum P ′
j′ =

∑
all j PjF[j,j′]|z with transition

probabilities as in (57).
Further speed gains. Some further, but more minor, speed gains can be realized at

this point by first calculating mode products that are common to all summands in (58).
For example, mode products in the discrete dimensions can always be carried out first
and then be used in all other calculations. In our 3D example, we would first calculate
the auxiliary value arrays C(3) = W ′ ×3 F

(0,3), essentialy taking the expectation for the
shock in the discrete dimension, and then proceed to calculate C(2) = C(3) ×2 F

(0,2). We
would then use these auxiliary arrays to calculate the first summand in (58) as C(0) =

C(2) ×1 F
(0,1) (the value under the reference distribution), then the second summand as

C(m1) = C(2) ×1 D
(m1) (the adjustment due to the drift in dim. 1), and finally the third

summand as C(m2) = C(3) ×1 F
(0,1) ×2 D

(m2) (the adjustment for dim. 2).
Differencing matrices. Finally, the computations can be sped up even further in the

case in which derivative matrices are obtained using differencing matrices, as is the case for
the mean moments in the consumption-savings, portfolio and altruism examples. Suppose
that the derivative matrix for moment zl is given by D(zl) = ∆(zl)F(0,i∗(l)), where ∆(zl) ∈
RNi∗(l)×Ni∗(l) is a differencing matrix for the dimension pertaining to moment zl, i∗(l).
Then, the ”matrix chain rule” for the sequence mode product implies that the summand
corresponding to the lth moment in (58) can be computed as

C(zl) = W ′ ×i∗(l) D
(zl) ×−i∗(l) {F(0)} = W ′ ×{F(0)}×i∗(l) ∆

(zl) = C(0) ×i∗(l) ∆
(zl). (60)

This means that we just use the continuation value under the reference drift, C(0), and then
compute the derivative of this value applying the differencing matrix, which is intuitive. In
our altruism application, for example, both summands C(m1) and C(m2) can be computed
in this fashion; the continuation value C(0) under the reference drifts has to be calculated
anyway for the first summand, thus the sequence mode product has to be carried out only
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once in each iteration.
Bellman Equation. For completeness, we now state the (approximate) Bellman Equa-

tion in tensor form, which we recursively update for s = 0, 1, . . . given some initial guess
W(0):

W(s+1) =max
U∈Γ̂

{
J(X ,U) + β

Nz∑
l=1

(
zl(X ,U)− Z̄l

)
◦
(
W(s) ×i∗(l) D

(zl) ×−i∗(l) {F(0)}
)}
(61)

+ βW(s) × {F(0)},

where the (n+1)-order tensor X ∈ RN1×···×Nn×n collects the values the state variables x ∈
Rn take on each of the Cartesian grid points, the (n + 1)-order tensor U ∈ RN1×···×Nn×Nu

collects the control vectors across all grid points, and where the functions J(·) and zl(·) are
suitably adjusted to accept tensor inputs and to return outputs in RN1×···×Nn . Also, the max-
operator means that the controls are chosen for each grid point such that the corresponding
payoff (i.e. the corresponding element of the tensor in the curly brackets) is maximized.
In practice, (61) is not as frightening as it looks at first glance. The maximization problem
has to be solved pointwise for all grid points separately. At a fixed grid point, the mode
products on the right-hand side are just scalars that have been calculated as continuation
values in the previous step in (58); these scalars represent the derivative of the continuation
value in the Nz moments (the sequence mode products inside the curly bracket) and the
continuation value under the reference moments (the sequence mode product outside the
curly brackets).

Ensuring positive transition probabilities. How can we ensure that all transition
probabilities of the constructed Markov chain are positive? When using sequence mode
products, the answer is far from obvious.because we never compute the actual transition
probabilities between two (Cartesian) grid points x̂, x̂′ ∈ X̂ from t to t + 1 — which is
precisely the reason for which the approach is faster. Note that the differencing operators
always have negative entries, thus negative probabilities will inevitably occur when mo-
ments zl are set too far from their reference values. We thus have to suitably bound the
range of these moments. We now describe a simple way to do this:
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1. Construct difference operators as difference quotients between two proper distribu-
tions. These means we set d(zl)+ = f (zl)+ − f (0), where f (zl)+ is a proper probability
distribution that is computed from setting lth moment to some z+l > z̄l, i.e. above
its reference value. In the case of the mean moment mi along dimension i, we can
simply do this at a grid point x̂ by using the reference distribution f (0) for x̂ and the
reference distribution for the grid point that lies just above x̂ in dimension i. Equiva-
lently, we construct the backward gradient with an associated distribution f (zl)− and
use the upwind principle to decide which distribution is used. In the following, we
will assume that all zl ≥ z̄l so that only forward quotients are used, but it is easy to
generalize the argument.

2. It can then easily be shown that the approximating distribution f(z) that arises from a
choice z for the moments is a weighted sum of the 1(1+Nz) distributions f (0), {f (zl)}l.
The weights (for the grid point indexed by j) are given by

yl ≡
zl − z̄l
z+ − z̄l

for l = 1, . . . , Nz, y0 ≡ 1−
Nz∑
l=1

yl. (62)

3. Finally, ensure that all weights are between zero and one. Geometrically, this is the
same as requiring that the vector y = (y0, y1, . . . , yNz) falls in the (l+1-dimensional)
simplex. In practice, this can be ensured by

(a) Restricting the feasible set for controls, Γ̂, such that the weights on the adjacent
distributions are proper, i.e. yl ∈ [0, 1] for l = 1, . . . , Nz.

(b) Check that the resulting y0 on the reference distribution is non-negative. If this
is not the case, shrink the weights (y1, . . . , yn) (also adjusting controls) so that
y0 = 0. Geometrically, this can be done by shrinking the vector (y1, . . . , yn)
such that it falls on the l-dimensional simplex, which is achieved by setting new
weights ỹl ≡ yl/(

∑
l yl). This way is especially simple, but others are possible.

(c) Once the algorithm has converged, we have to make sure that the ”artificial”
constraints imposed here are not binding. If they are, we have to modify the
grid or shorten the time step.
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C Appendix: Benchmark solution techniques

C.1 Consumption-Savings Problem

C.1.1 Standard Value Function Iteration

This approach is a standard textbook value function iteration benchmark. The value func-
tion is Vt(at) = maxct u(ct) + βEtVt+1(at+1). Briefly the algorithm is described in the
following steps:

1. Create a grid on assets a. Guess the initial value function. Set the iteration counter
to n = 0. Approximate the continuous distribution of r̃ with a discrete number of
possible realizations p and their probabilities π. This is done using Tauchen (1986)
method.

2. Set n = n + 1. For each grid point, use the Euler equation to obtain the optimal
c∗(a) for iteration n: cn. A (vectorized) bisection method is used when solving the
Euler equation for c∗(a). When evaluating the value function V ((a − c + y)(1 + r̃)

in between the grid-points, use an interpolation method of choice (usually linear).

3. To speed up the computation, iterate on Vt, using the same consumption policy func-
tion c∗, k times: V (a) = u(c∗(a)) + βEtV ((a− c∗(a) + y)(1 + r̃))

4. Compare the policy function cn with the one from the previous iteration cn−1. If
|cn − cn−1| < ϵ, the algorithm has converged , and we have obtained the optimal
policy and value functions. If not, go to step 2.

C.1.2 Endogenous Grid Method

Endogenous grid method, as used by Carroll (2006), is a known method to speed up the
standard solution techniques (policy and value function iteration). As we want to compare
the proposed methods with the state of the art algorithms, we compute the solution of the
example model with the endogenous grid method as well. The algorithm is as follows:

57



Figure C.1: Policy functions

1. Create a grid on savings s with the smallest grid-point being 0. Guess the initial value
function. Set the iteration counter to n = 0. Approximate the continuous distribution
of r̃ with a discrete number of possible realizations p and their probabilities π. This
is done using Tauchen (1986) method.

2. Set n = n+1. For each grid point in s (which denotes savings: s = a− c+ y, while
a′ = s(1 + r̃)), evaluate the Euler equation to obtain an endogenous grid a:

a = u (Etβ(1 + r̃)V (s(1 + r̃)))−1 + s− y (63)

This tells us: for which starting level of assets at, it is optimal to save s. This implic-
itly also gives us the optimal c∗(a) for iteration n: cn = a−s+y. The computational
gains stem from the fact that we can simply evaluate the right-hand side of the equa-
tion (63) to obtain a, and thus avoid root-finding. When evaluating the value function
V (s(1+ r̃) in between the grid-points, use an interpolation method of choice (usually
linear). Discard the negative values of a, and if there are none, add a number of grid-
points between 0 and the lowest obtained a, where the consumption is given directly
by the budget constraint, since we know that s = 0 (lowest grid-point of savings).
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We can call this new modified grid aq. This allows us to construct the new guess for
the value function V (aq).

3. Compare the policy function cn with the one from the previous iteration cn−1. If
|cn − cn−1| < ϵ, the algorithm has converged , and we have obtained the optimal
policy and value functions. If not, go to step 2.

C.2 Portfolio Choice (Merton) problem

C.2.1 Standard Value Function Iteration: Portfolio Choice Problem

This approach is a standard textbook value function iteration benchmark. The value func-
tion is Vt(at) = maxct,xt u(ct) + βEtVt+1(at+1). Briefly the algorithm is described in the
following steps:

1. Create a grid on assets a. Guess the initial value function. Set the iteration counter
to n = 0. Approximate the continuous distribution of r̃ with a discrete number of
possible realizations p and their probabilities π. This is done using Tauchen (1986)
method.

2. Set n = n + 1. For each grid point, use the Euler equation to obtain the optimal
c∗(a) and x∗(a) for iteration n: cn, xn. A (vectorized) bisection method is used when
solving the Euler equation for c∗(a), with an inner loop which computes the optimal
portfolio choice x, given the consumption guess. When evaluating the value function
V ((a−c+y)(1+xt(r̃t+1−rf )+rf ) in between the grid-points, use an interpolation
method of choice (usually linear).

3. To speed up the computation, iterate on Vt, using the same policy functions c∗ and
x∗, k times: V (a) = u(c∗(a)) + βEtV ((a− c∗(a) + y)(r̃t+1 − rf ) + rf ))

4. Compare the policy function cn with the one from the previous iteration cn−1. If
|cn − cn−1| < ϵ, the algorithm has converged , and we have obtained the optimal
policy and value functions. If not, go to step 2.
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C.2.2 Endogenous Grid Method:portfolio choice

This solution algorithm uses a modified method from Carroll (2006), where, before evalu-
ating the Euler equation to obtain the optimal consumption, the optimal portfolio choice x

is computed. This way, there is root-finding only in one dimension, when computing the
optimal portfolio choice.

1. Create a grid on savings s with the smallest grid-point being 0. Guess the initial value
function. Set the iteration counter to n = 0. Approximate the continuous distribution
of r̃ with a discrete number of possible realizations p and their probabilities π. This
is done using Tauchen (1986) method.

2. Set n = n+1. For each grid point in s (which denotes savings: s = a− c), compute
the optimal portfolio choice. This gives us the continuation value of saving s, and is
done by vectorised bisection method. Following this, evaluate the Euler equation to
obtain an endogenous grid a:

a = u (Etβ(1 + xt(r̃t+1 − rf ) + rf )V (s(1 + xt(r̃t+1 − rf ) + rf )))
−1 + s (64)

This tells us: for which starting level of assets at, it is optimal to save s. This implic-
itly also gives us the optimal c∗(a) for iteration n: cn = a − s. The computational
gains stem from the fact that we can simply evaluate the right-hand side of the equa-
tion (64) to obtain a, and thus avoid root-finding. When evaluating the value function
V (s(1+ r̃) in between the grid-points, use an interpolation method of choice (usually
splines for the case of portfolio choice). Discard the negative values of a, and if there
are none, add a number of grid-points between 0 and the lowest obtained a, where
the consumption is given directly by the budget constraint, since we know that s = 0

(lowest grid-point of savings). We can call this new modified grid aq. This allows us
to construct the new guess for the value function V (aq).

3. Compare the policy function cn with the one from the previous iteration cn−1. If
|cn − cn−1| < ϵ, the algorithm has converged , and we have obtained the optimal
policy and value functions. If not, go to step 2.
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